Skip to main content
Log in

Non-smooth engineering dynamics

  • 50th Anniversary of Meccanica
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the meantime it is well known that multibody systems including multiple contacts, either as phenomena with contacts and detachment or with stick and slip or both, represent a combinatorial problem of very high dimensions. The solution of this problem started in the eighties and nineties with the application of the complementarity idea, numerically solved for example by the Lemke algorithm, and it continued, especially on the numerical side, by using time stepping schemes, today in connection with the Augmented Lagrange concept and applying prox-functions from convex analysis. The introduction of projection methods connected with the prox-functions at the beginning of the nineties by Alart and Curnier and their application to large technical systems was one important break-through regarding the numerics of really large systems. With respect to the field of non-smooth mechanics with the “fathers” J.J. Moreau and P.D. Panagiotopoulos in the seventies and eighties, extensive research activities have taken place during the last 30–40 years concerning all areas, from sophisticated mathematical–theoretical foundations to more practically oriented problems including numerical and experimental treatment. All these efforts have led to a rather high degree of saturation offering a large variety of tools for considering non-smooth phenomena. Many scientific work concentrate now more on good algorithms for large systems and on suitable formulations for such cases. In industrial practice we have a large variety of mechanical systems operating with contacts of all kinds, combustion engines, drive trains, manufacturing equipment, CVT-gears or vibration conveyors, to name only a few. We shall give some examples. And we shall demonstrate the best way from the engineering point of view how to deal with such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acary V, Brogliato B (2008) Numerical methods for non-smooth dynamical systems, lecture notes in applied and numerical mechanics. Springer, Berlin

    MATH  Google Scholar 

  2. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Amontons G (2004) On the resistance originating in machines (in French). Mem Acad R 1699:206–222

    Google Scholar 

  4. Baraff D (1993) Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10:292–352

    Article  MathSciNet  MATH  Google Scholar 

  5. Beitelschmidt M (1999) Reibstöße in Mehrkörpersystemen. Fortschrittberichte VDI, Reihe 11, Nr. 275, VDI-Verlag Düsseldorf

  6. Boltzmann L (1922) Vorlesungen ber die Prinzipe der Mechanik. Verlag von Johann Ambrosius Barth, T I, T II

  7. Bremer H (1988) Dynamik und Regelung mechanischer Systeme. Teubner Studienbücher, Mechanik, B.G. Teubner, Stuttgart

  8. Bremer H (2008) Elastic multibody dynamics. Springer, Berlin B.V

    Book  MATH  Google Scholar 

  9. Bremer H, Pfeiffer F (1992) Elastische Mehrkörpersys-teme. Teubner Studienbücher, Mechanik, B.G. Teubner, Stuttgart

  10. Brogliato B (1996) Nonsmooth impact dynamics. Springer, London

    MATH  Google Scholar 

  11. Brogliato B (1999) Nonsmooth mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Brogliato B, ten Dam AA, Paoli L, Gnot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150

    Article  ADS  Google Scholar 

  13. Coulomb CA (1785) The theory of simple machines (in French). Mem Math Phys Acad Sci 10:161–331

    Google Scholar 

  14. Foerg M (2007) Mehrkörpersysteme mit mengenwertigen Kraftgesetzen - Theorie und Numerik. Fortschrittberichte VDI, Reihe 20, Nr. 411, VDI-Verlag Düsseldorf

  15. Foerg M, Geier T, Neumann L, Ulbrich H (2006) R-factor strategies for the augmented lagrangian approach in multi-body contact mechanics. In: II European conference on computational mechanics, Lisboa

  16. Fourier JB (1798) Mmoire sur la Statique, contenant la dmonstration du principe des vitesses virtuelles et la thorie des moments. J de l’Ecole Polytech, Cahier 5, Tome II, pp 20–60

  17. Fremond M (2002) Non-smooth thermomechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Fritz P, Pfeiffer F (1995) Dynamics of high speed roller chain drives. In: Proceedings of the 1995 design engineering technical conference, Boston, 17–21 Sept, vol 3, Part A, DE-vol 84-1, pp 573–584

  19. Fritz P (1998) Dynamik schnellaufender Kettentriebe. Fortschrittberichte VDI, Reihe 11, Nr. 253, VDI-Verlag, Düsseldorf

  20. Glocker Chr (2001) Set-valued force laws—dynamics of non-smooth systems. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Glocker Ch, Pfeiffer F (1995) Multiple impacts with friction in multibody systems. Nonlinear Dyn 7:471–497

    Article  MathSciNet  Google Scholar 

  22. Glocker C (2013) Energetic consistency conditions for standard impacts, part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst Dyn 29(1):77–117

    Article  MathSciNet  MATH  Google Scholar 

  23. Glocker Ch (2014) Energetic consistency conditions for standard impacts, part II: Poisson-type inequality impact laws. Multibody Syst Dyn 32(4):445–509

  24. Hertz H (1894) Die Prinzipien der Mechanik, in:Gesammelte Werke, Band III. Verlag J. A. Barth, Leipzig

    Google Scholar 

  25. Jean M, Moreau JJ (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Curnier A (ed) Proceedings of the contact mechanics international symposium, October 7–9, EPFL, Lausanne, PPUR, pp 31–48

  26. Klarbring A (1992) Mathematical programming and augmented lagrangian methods for frictional contact problems. In: Curnier A (ed) Proceedings of the contact mechanics international symposium, 7–9 Oct, EPFL, Lausanne, PPUR, pp 409–422

  27. Klarbring A (1994) Mathematical programming in contact problems. In: Aliabadi MH (ed) Computational methods for contact problems. Elsevier, Amsterdam

  28. Kwak BM (1991) Complementarity problem formulation of three-dimensional frictional contact. ASME J Appl Mech 58:134–140

    Article  MATH  Google Scholar 

  29. Kwak BM, Park JK (1994) Three-dimensional frictional analysis using the homotopy method. ASME J Appl Mech 61:703–709

    Article  MATH  Google Scholar 

  30. Leine R, Nijmeijer H (2004) Dynamics and bifurcations of non-smooth mechanical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Lötstedt P (1981) Coulomb friction in two-dimensional rigid body systems. Z für Angew Math und Mech 61:605–615

    Article  ADS  MathSciNet  Google Scholar 

  32. Lötstedt P (1982) Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J Appl Math 42:281–296

    Article  MathSciNet  Google Scholar 

  33. Mangasarian OL (1976) Equivalence of the complementarity problem to a system of nonlinear equations. SIAM J Appl Math 31(1):89–92

    Article  MathSciNet  MATH  Google Scholar 

  34. Martins JAC, Oden JT, Simoes FMF (1990) A study of static and kinetic friction. Int J Eng Sci 28(1):29–92

    Article  MathSciNet  MATH  Google Scholar 

  35. Meitinger Th (1998) Modellierung und simulation von montageprozessen. Fortschritt-Berichte VDI, Reihe 2, Nr. 476, VDI-Verlag Düsseldorf

  36. Monteiro Marques MDP (1993) Differential Inclusions in nonsmooth mechanical problems. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  37. Moreau JJ (1979) Application of convex analysis to some problems of dry friction. In: Trends in applications of pure mathematics to mechanics, vol 2, London

  38. Moreau JJ (1986) Une formulation du contact a frottement sec; application au calcul numerique. Technical Report 13, C.R. Acad. Sci. Paris, Serie II

  39. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. Non-smooth mechanics and applications, CISM courses and lectures. Springer, Wien

  40. Murty KG (1988) Linear complementarity, linear and nonlinear programming. In: White DJ (ed) Sigma series in applied mathematics. Heldermann Verlag, Berlin

  41. Oden JT, Martins JAC (1985) Models and computational methods for dynamic friction phenomena. Comput Methods Appl Mech Eng 52:527–634

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  43. Panagiotopoulos PD (1993) Hemivariational inequalities. Springer, Berlin

    Book  MATH  Google Scholar 

  44. Pfeiffer F (2001) Applications of unilateral multibody dynamics. Philos Trans R Soc 359(1789):2609–2628

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Pfeiffer F, Foerg M, Ulbrich H (2006) Numerical aspects of non-smooth multibody dynamics. Comput Methods Appl Mech Eng 195:6891–6908

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Pfeiffer F (1984) Mechanische Systeme mit unstetigen Übergängen. Ing Arch 54:232–240

    Article  MATH  Google Scholar 

  47. Pfeiffer F (2008) Mechanical system dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Pfeiffer F, Borchsenius F (2004) New hydraulic system modelling. J Vib Control 10:1493–1515

    Article  MATH  Google Scholar 

  49. Pfeiffer F, Glocker Chr (1996) Multibody dynamics with unilateral contacts. Wiley, New York

    Book  MATH  Google Scholar 

  50. Pfeiffer F, Fritz P, Srnik J (1997) Nonlinear vibrations of chains. J Vib Control 3:397–410

    Article  Google Scholar 

  51. Pfeiffer F, Stiegelmeyr A (1997) Damping towerlike structures by dry friction. In: Proceedings of the DETC ’97, ASME Design Engineering Technology conference

  52. Rockafellar RT (1972) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  53. Rossmann Th, Pfeiffer F (1997) Efficient algorithms for nonsmooth dynamics. In: International mechanical engineering congress and exposition symposium on nonlinear dynamics and stochastic mechanics 1997, Dallas, TX, November 16–21

  54. Rossmann Th (1998) Eine Laufmaschine für Rohre. Fortschrittberichte VDI, Reihe 8, Nr. 732, VDI-Verlag Düsseldorf

  55. Schindler Th, Nguyen B, Trinkle J (2011) Understanding the difference between prox and complementarity formulations for simulation of systems with contact. In: International conference on intelligent robots and systems, San Francisco, CA, pp 1433–1438

  56. Schindler Th, Geier Th, Ulbrich H, Pfeiffer F, van der Velde A, Brandsma A (2007) Dynamics of pushbelt CVTs. VDI-Verlag, Düsseldorf

    MATH  Google Scholar 

  57. Srnik J, Pfeiffer F (1997) Dynamics of CVT chain drives: mechanical model and verification. In: Proceedings of the DETC’97, ASME Design Engineering Technology conference

  58. Srnik J (1999) Dynamik von CVT-Keilkettengetrieben. Fortschritt-Berichte VDI, Reihe 12, Nr. 372, VDI-Verlag Düsseldorf

  59. Wolfsteiner P, Pfeiffer F (1998) The parts transportation in a vibratory feeder. In: IUTAM symposium on unilateral multibody dynamics, München

  60. Wolfsteiner P (1999) Dynamik von Vibrationsförderern. Dissertation TU-München, Lehrstuhl B ür Mechanik

  61. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, F. Non-smooth engineering dynamics. Meccanica 51, 3167–3184 (2016). https://doi.org/10.1007/s11012-016-0562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0562-4

Keywords

Navigation