Skip to main content
Log in

I-DIC-based identification strategy of failure criteria: application to titanium and nickel-based alloys

  • 50th Anniversary of Meccanica
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Integrated digital image correlation (I-DIC) is used to probe three different failure criteria on two high performance alloys. The approach consists of two steps. First, the mechanical state of each analyzed test is determined as best as possible by calibrating the parameters of a given elastoplastic law. Thin and thick samples are studied, which induce totally different states of equivalent plastic strain. Second, the state of stresses on the actual fractured surface is assessed by post-processing the 3D finite strain simulations of the I-DIC framework. These data are used to analyze different local criteria. It is found that a maximum eigen stress criterion is well adapted to the studied materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Robinson E (1944) Bursting tests of steam-turbine disk wheels. Trans of ASME 66:373

    Google Scholar 

  2. Mazière M, Besson J, Forest S, Tanguy B, Chalons H, Vogel F (2009) Overspeed burst of elastoviscoplastic rotating disks–Part I: analytical and numerical stability analyses. Eur J Mech A Solids 28(1):36

    Article  MATH  Google Scholar 

  3. Mazière M, Besson J, Forest S, Tanguy B, Chalons H, Vogel F (2009) Overspeed burst of elastoviscoplastic rotating disks -Part II: burst of a superalloy turbine disk. Eur J Mech A Solids 28(3):428

    Article  MATH  Google Scholar 

  4. Lindner D (2016) Towards the fracture prediction of turbomachinery disks: a contribution of digital image correlation. PhD thesis, Université Paris-Saclay

  5. Lindner D, Mathieu F, Hild F, Allix O, Minh Ha C, Paulien-Camy O (2015) On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated DIC. J Appl Mech 82(7):071014

    Article  Google Scholar 

  6. Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc Inst Mech Eng, Part C J Mech Eng Sci 213(8):811

    Article  Google Scholar 

  7. Brunet M, Morestin F (2001) Experimental and analytical necking studies of anisotropic sheet metals. J Mater Proc Technol 112(2–3):214

    Article  Google Scholar 

  8. Wattrisse B, Chrysochoos A, Muracciole J, Némoz-Gaillard M (2001) Analysis of strain localisation during tensile test by digital image correlation. Exp Mech 41(1):29

    Article  MATH  Google Scholar 

  9. Rastogi PK, Hack E (eds) (2012) Optical methods for solid mechanics: a full-field approach. Wiley-VCH, Weinheim

    Google Scholar 

  10. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503

    Article  Google Scholar 

  11. Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties–a review. Strain 42:69

    Article  Google Scholar 

  12. Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, vol. 5496, Springer, Berlin LNCS, pp 161–171

  13. Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631

    Article  MATH  Google Scholar 

  14. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105

    Article  Google Scholar 

  15. Abouridouane M (2005) Bruchverhalten von leichtmetallen unter impact-beanspruchung. Ph.D. thesis, RWTH Aachen, Aachen

  16. Tresca H (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. Comptes Rendus de l’Académie des Sciences (Paris) 59:754

    Google Scholar 

  17. von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913:582

    MATH  Google Scholar 

  18. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A Math Phys Eng Sci 193(1033):281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hosford W (1972) Generalized isotropic yield criterion. J Appl Mech 39(2):607

    Article  Google Scholar 

  20. Bridgman PW (1923) The compressibility of thirty metals as a fucntion of pressure and temperature. Proc Am Acad Arts Sci 58(5):163

    Article  Google Scholar 

  21. Bridgman P (1964) Collected experimental papers, vol 1–7. Harvard University Press, Cambridge, MA

    Google Scholar 

  22. Naghdi P, Essenburg F, Koff W (1958) An experimental study of initial and subsequent yield surfaces in plasticity. J Appl Mech 25(2):201

    Google Scholar 

  23. Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik 36(11):913

    Article  ADS  Google Scholar 

  24. Taylor GI, Quinney H (1932) The plastic distortion of metals. Philos Trans R Soc Lond A Math Phys Eng Sci 230(681–693):323

    Article  ADS  MATH  Google Scholar 

  25. Osgood W (1947) Combined stress tests on 24S-T aluminium alloy tubes. J Appl Mech 14:147

    Google Scholar 

  26. Bocher L, Delobelle P (1997) Etude expérimentale du comportement cyclique d’un acier du type 316 L sous chargement mutiaxial complexe en traction-torsion-pressions interne et externe. J de Physique III 7:1755

    Article  ADS  Google Scholar 

  27. Shiratori E, Ikegami K (1967) A new biaxial tension testing machine with flat specimens. J Soc Mater Sci Jpn 16(165):433

    Article  Google Scholar 

  28. Mönch E, Galster D (1963) A method for producing a defined uniform biaxial tensile stress field. Br J Appl Phys 14(11):810

    Article  ADS  Google Scholar 

  29. Hayhurst D (1973) A biaxial-tension creep-rupture testing machine. J Strain Anal Eng Des 8(2):119

    Article  Google Scholar 

  30. Kelly D (1976) Problems in creep testing under biaxial stress systems. J Strain Anal Eng Des 11(1):1

    Article  Google Scholar 

  31. Morrison C (1986) Biaxial testing using cruciform specimens. In: Gooch D, How IM (eds) Techniques for multiaxial creep testing. Springer, Netherlands, Dordrecht, pp 111–126

    Chapter  Google Scholar 

  32. Makinde A, Thibodeau L, Neale KW (1992) Development of an apparatus for biaxial testing using cruciform specimens. Exp Mech 32(2):138

    Article  Google Scholar 

  33. Boehler J, Demmerle S, Koss S (1994) A new direct biaxial testing machine for anisotropic materials. Exp Mech 34(1):1

    Article  Google Scholar 

  34. Cognard JY, Feuardent V, Virely JM (1997) Optimisation of a structure for biaxial mechanical tests. In: Chedmail P, Bocquet JC, Dornfeld D (eds) Integrated design and manufacturing in mechanical engineering: proceedings of the 1st IDMME conference held in Nantes, France, 15–17 April 1996. Springer, Netherlands, Dordrecht, pp 495–504

    Chapter  Google Scholar 

  35. Ko HY, Scott RF (1967) A new soil testing apparatus. Géotechnique 17(1):40

    Article  Google Scholar 

  36. Pearce J (1971) A new triaxial apparatus. In: Parry R (ed) Stress–strain behaviour of soils (proceedings of the roscoe memorial symposium). G.T. Foulis and Co., Henley-on Thames, pp 330–339

    Google Scholar 

  37. Shima S, Mimura K (1986) Densification behaviour of ceramic powder. Int J Mech Sci 28(1):53

    Article  Google Scholar 

  38. Lanier J (1990) Geomaterials: constitutive equations and modelling. In: Darve F (ed) Recent trends. Laboratory testing, Elsevier Applied Sciences, London, pp 7–26

    Google Scholar 

  39. Calloch S, Marquis D (1999) Triaxial tension-compression tests for multiaxial cyclic plasticity. Int J Plast 15:521

    Article  MATH  Google Scholar 

  40. Calloch S, Bouvet C, Hild F, Doudard C, Lexcellent C (2002) Analysis of mechanical behavior and in-situ observations of Cu-Al-Be SMA under biaxial compressive tests by using DIC, In: SPIE proceedings. vol. 4537, pp. 83–86

  41. Petkovski M, Crouch RS, Waldron P (2006) Apparatus for testing concrete under multiaxial compression at elevated temperature (mac2T). Exp Mech 46(3):387

    Article  Google Scholar 

  42. Nakazima K, Kikuma T, Hasuka K (1968) Study on the formability of steel sheets. Yawata Tech Rep 264:8517–8530

    Google Scholar 

  43. Marciniak Z, Kuczyński K, Pokora T (1973) Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int J Mech Sci 15(10):789

    Article  Google Scholar 

  44. Keeler S (1965) Determination of forming limits in automotive stampings. SAE Techn Paper 650535:1–9

    Google Scholar 

  45. Goodwin G (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE Tech Paper 680093:1–8

    Google Scholar 

  46. Keeler S (1968) Circular grid system–a valuable aid for evaluating sheet metal formability. SAE Tech Paper 680092:1–9

    ADS  Google Scholar 

  47. Vacher P, Haddad A, Arrieux R (1999) Determination of the forming limit diagrams using image analysis by the corelation method. CIRP Ann–Manuf Technol 48(1):227

    Article  Google Scholar 

  48. Breutinger F (2006) Verformungsverhalten und Verformungskinetik von Titan technischer Reinheit und der Titanlegierung TiAl6v4 im Bereich niedriger homologer Temperaturen von 0, 22 (\(150^\circ {\text{C}}\)) bis 0, 48 (\(650^\circ {\text{ C }}\)). Ph.D. thesis, Universität Erlangen-Nürnberg

  49. Sajjadi S, Elahifar H, Farhangi H (2008) Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500. J Alloys Compd 455(1–2):215

    Article  Google Scholar 

  50. Davis JR (2000) Nickel, cobalt, and their alloys. In: ASM specialty handbook, ASM International, Materials Park, OH

  51. Lambert N, Drapier JM (1968) Structural stability of Udimet 500 a nickel base superalloy. In: International symposium on structural satbility of Superalloys

  52. Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. A full-field approach. Wiley-VCH, Weinheim (Germany), pp 183–228

    Google Scholar 

  53. de Saint-Venant A Barré (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides ductiles au-delà des limites où l’élasticité pourrait les ramener à leur premier état. Comptes Rendus de l’Académie des Sciences (Paris) 70:473

    MATH  Google Scholar 

  54. Beltrami E (1885) Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento (1877–1894) 18(1):145

    Article  MATH  Google Scholar 

  55. Huber M (1904) Specific deformation work as a measure of material damage [in Polish]. Czasopismo Techniczne, Lwów 15

  56. Hencky H (1924) Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Zeitschrift für Angewandte Mathematik und Mechanik 4(4):323

    Article  ADS  MATH  Google Scholar 

  57. Coulomb CA (1773) Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Mémoires de mathématique & de physique, présentés à l’Académie Royale des Sciences par divers savans 7:343

    Google Scholar 

  58. Rankine WM (1857) On the stability of loose Earth. Philos Trans R Soc Lond 147:9

    Article  Google Scholar 

  59. McClintock F (1968) A criterion for ductile fracture by growth of holes. J Appl Mech 35(2):363

    Article  Google Scholar 

  60. Rice J, Tracey D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201

    Article  ADS  Google Scholar 

  61. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  62. Lemaitre J (1992) A course on damage mechanics. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  63. Voyiadjis GZ (ed) (2014) Handbook of damage mechanics. Springer, New York, NY

    Google Scholar 

  64. Morgeneyer T, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F (2014) In situ 3D observation of early strain localisation during failure of thin Al alloy (2198) sheet. Acta Mater 69:78

    Article  Google Scholar 

  65. Allix O, Feissel P, Nguyen HM (2005) Identification strategy in the presence of corrupted measurements. Eng Comput 22(5–6):487–504

    Article  MATH  Google Scholar 

  66. Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Methods Appl Mech Eng 196(13):1968

    Article  ADS  MATH  Google Scholar 

  67. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24(6):1071

    Article  MATH  Google Scholar 

  68. Papasidero J, Doquet V, Mohr D (2015) Ductile fracture of aluminum 2024–T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited. Int J Solids Struct 69–70:459

    Article  Google Scholar 

  69. Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42(21):214004

    Article  ADS  Google Scholar 

  70. Cao TS, Maire E, Verdu C, Bobadilla C, Lasne P, Montmitonnet P, Bouchard PO (2014) Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests Application to the identification of a shear modified GTN model. Comput Mater Sci 84:175

    Article  Google Scholar 

  71. Leclerc H (2007) Plateforme metil: optimisations et facilités liées à la génération de code. In 8e Colloque National en Calcul des Structures

Download references

Acknowledgements

The I-DIC code used herein is part of the Metil platform developed by Hugo Leclerc [71]. Dominik Lindner was supported by ANRT/CIFRE (Grant Number 2012–1519). This work was funded by SAFRAN Helicopter Engines. It is also a pleasure to acknowledge the support of BPI France (“DICCIT” project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Allix.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, D., Allix, O., Hild, F. et al. I-DIC-based identification strategy of failure criteria: application to titanium and nickel-based alloys. Meccanica 51, 3149–3165 (2016). https://doi.org/10.1007/s11012-016-0555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0555-3

Keywords

Navigation