Skip to main content
Log in

An innovative tooth root profile for spur gears and its effect on service life

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An innovative approach to the design of the gear-tooth root-profile, and its effects on the service life is reported in this paper. In comparison with the widely used trochoidal and the recently proposed circular-filleted root profiles, the optimum profile proposed here is a \(G^2\)-continuous curve that blends smoothly with both the involute of the tooth profile and the dedendum circle. Following the AGMA and ISO standards for fatigue loading, the von Mises stress at the critical section and stress distribution along the gear tooth root are studied. The process leading to gear-tooth failure is composed of the crack initiation phase, in number of cycles \(N_i\), and the crack propagation phase, in \(N_p\) cycles. The strain-life (\(\epsilon\)-N) method is employed to determine \(N_i\), where the crack is assumed to initiate at the critical section. Based on the ANSYS crack-analysis module, the effects of \(G^2\)-continuous blending on the stress intensity factor (SIF) are investigated for different crack sizes. Paris’ law, within the framework of Linear Elastic Fracture Mechanics, is used to correlate the SIF with crack size and, further, to determine \(N_p\). The optimum profile provides a significant reduction in SIF and improvement in both \(N_i\) and \(N_p\). Spur gears are made of high-strength steel alloy 42CrMo4, the effects of its properties and surface treatment on service life improvement not being included in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Although N is an integer, its values lie in the order of \(10^6\), for which reason it is common practice to treat it as a real number.

  2. \(G^1\) continuity means point- and tangent-continuity; not curvature-continuity.

  3. According to Venkayya’s criterion, the optimum design can be interpreted as the one in which the strain energy per unit volume stays constant

  4. 42CrMo4 contains 0.43 % C, 0.22 % Si, 0.59 % Mn, 1.04 % Cr, and 0.17 % Mo.

Abbreviations

\(\alpha\) :

Crack propagation direction angle

\(\alpha _c\) :

Pressure angle

\(\beta\) :

Dimensionless geometric factor

\(\varDelta \epsilon\) :

Total cyclic strain range

\(\varDelta \epsilon _e\) :

Elastic strain range

\(\varDelta \epsilon _p\) :

Plastic strain range

\(\varDelta \sigma\) :

Stress range

\(\varDelta K\) :

Stress intensity factor range

\(\epsilon _f^\prime\) :

Fatigue ductility coefficients

\(\nu\) :

Poisson ratio

\(\sigma\) :

Uniform tensile stress in a direction normal to the plane of crack

\(\sigma _f^\prime\) :

Fatigue strength

\(\sigma _m\) :

Mean stress

\(\xi _{F}\) :

Angle between the fillet tangent and the tooth centerline

a :

Crack length

\(a_c\) :

Critical crack size

\(a_i\) :

Initial crack size

b :

Strength exponent

C :

Material constant

c :

Fatigue ductility exponent

E :

Young modulus

\(h_{Fe}\) :

Bending moment arm application at the tip

K :

Stress intensity factor

\(K^{\prime }\) :

Hardening coefficient

\(K_I\) :

SIF for fatigue mode I

\(K_{Ic}\) :

Fracture toughness

\(K_{II}\) :

SIF for fatigue mode II

m :

Material constant

\(m_t\) :

Gear module

\(n^{\prime }\) :

Cyclic strain-hardening exponent

\(N_i\) :

Crack initiation period

\(N_p\) :

Crack propagation period

\(N_t\) :

Number of teeth

\(r_a\) :

Radius of the addendum circle

\(r_b\) :

Radius of the base circle

\(r_d\) :

Radius of the dedendum circle

\(r_p\) :

Radius of the pitch circle

\(s_{Fn}\) :

Tooth thickness at the critical point

APDL:

ANSYS parametric design language

CAE:

Computer-aided-engineering

DOF:

Degrees of freedom

DTA:

Damage tolerance analysis

FEM:

Finite element method

HPSTC:

Highest point of single tooth contact

LEFM:

Linear elastic fracture mechanics

MTS:

Maximum tangential stress

OCS:

Optimum cubic-spline

ODA:

Orthogonal decomposition algorithm

SIF:

Stress intensity factor

References

  1. Wang Z, Zhang N, Dong D, Chen X (2012) Analysis of the influence of fillet curves on gear bending strength based on space contact. Appl Mech Mater 155–156(2):1203–1207

    Google Scholar 

  2. Eaton Corporation (2011) Understanding Spur Gear Life, TRSM0913. Service Manual. Eaton and Dana Corporation, Kalamazoo, Mich. http://www.roadranger.com

  3. Kapelevich A, Shekhtman Y (2009) Tooth fillet profile optimization for gears with symmetric and asymmetric teeth. Gear Technol September/October 2009:73–79

    Google Scholar 

  4. Buckingham E (1988) Analytical mechanics of gears. Dover Publications Inc, New York

    Google Scholar 

  5. Zhao X (2014) Increasing bending strength in spur gears using shape optimisation of cutting tool profile. Aust J Mech Eng 12(2):208–216

    Article  Google Scholar 

  6. Spitas V, Costopoulos T, Spitas C (2005) Increasing the strength of standard involute gear teeth with novel circular root fillet design. Am J Appl Sci 2(6):1058–1064

    Article  MATH  Google Scholar 

  7. Sankar S, Raj MS, Nataraj M (2010) Profile modification for increasing the tooth strength in spur gear using CAD. Engineering 2(9):740–749

    Article  Google Scholar 

  8. Ristić D (2009) Numerical model for the critical stress determination in spur gears. Sci Tech Rev LVIX 1:78–86

    Google Scholar 

  9. Quadri SAN, Dolas DR (2015) Effect of root radii on stress analysis of involute spur gear under static loading. Int J Recent Technol Mech Electr Eng (IJRMEE) 2(5):99–103

    Google Scholar 

  10. Sanders AA (2010) An experimental investigation of the influence of elliptical root shapes and asymmetric teeth on root stresses and bending fatigue lives. Master’s thesis, The Ohio State University, Columbus

  11. Pulley FT, Kipling MW, Matson GA, Thurman DL, Avery BW (2000) Method for producing and controlling a fillet on a gear. US Patent 6,164,880

  12. Jelaska D, Podrug S (2007) Gear tooth root fatigue behavior. Adv Eng 2:187–198

    Google Scholar 

  13. Collins JA (1993) Failure of materials in mechanical design: analysis, prediction, prevention, 2nd edn. Wiley, New York

    Google Scholar 

  14. Gosz MR (2006) Finite element method: applications in solids, structures, and heat transfer. CRC Press, Taylor & Francis Group, Boca Raton

    MATH  Google Scholar 

  15. Nikolaidis E, Ghiocel DM, Singhal S (2007) Engineering design reliability applications: for the aerospace, automotive, and ship industries. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Radhakrishnan V (1992) On the bilinearity of the Coffin-Manson low-cycle fatigue relationship. Int J Fatigue 14(5):305–311

    Article  Google Scholar 

  17. Lemaitre J, Chaboche J-L (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Glodez S, Sraml M, Kramberger J (2002) A computational model for determination of service life of gears. Int J Fatigue 24:1013–1020

    Article  MATH  Google Scholar 

  19. Blarasin A, Guagliano M, Vergani L (1997) Fatigue crack growth prediction in specimens similar to spur gear teeth. Fatigue Fract Eng Mater Struct 20:1171–1182

    Article  Google Scholar 

  20. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Flodin A, Andersson M (2012) Tooth root optimization of powder metal gears—reducing stress from bending and transient loads. Powder Metallurgy World Congress and Exhibition (PM 2012), Yokohama

  22. Kawalec A, Wiktor J, Ceglarek D (2006) Comparative analysis of tooth-root strength using ISO and AGMA standards in spur and helical gears with FEM-based verification. ASME J Mech Des 128(5):1141–1158

    Article  Google Scholar 

  23. Pedrero JI, Vallejo II, Pleguezuelos M (2006) Calculation of tooth bending strength and surface durability of high transverse contact ratio spur and helical gear drives. J Mech Des ASME 129(1):69–74

    Article  Google Scholar 

  24. Fernandes P (1996) Tooth bending fatigue analysis in gears. Eng Fail Anal 3(3):219–225

    Article  Google Scholar 

  25. Senthilvelan S, Gnanamoorthy R (2006) Effect of gear tooth fillet radius on the performance of injection molded nylon 6/6 gears. Mater Des 27(8):632–639

    Article  Google Scholar 

  26. Spitas C, Spitas V (2007) Four-parametric study of the bending strength of circular fillet versus trochoidal fillet in gear tooth design using BEM. Mech Based Des Struct Mach 35(2):163–178

    Article  MATH  Google Scholar 

  27. Kapelevich A, Shekhtman Y (2003) Direct gear design: bending stress minimization. Gear Technol 20(5):44–47

    Google Scholar 

  28. Zou T, Shaker M, Angeles J, Morozov A (2014) Optimization of tooth root profile of spur gears for maximum load-carrying capacity. In: Paper DETC2014-34568, Proceedings ASME 2014 international design engineering technical conferences and computers and information in engineering conference IDETC/CIE 2014, August 17–20, Buffalo

  29. Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Dudley DW (1994) Handbook of practical gear design. CRC Press

  31. Radzevich S (2012) Theory of gearing: kinematics, geometry and synthesis. Taylor and Francis Group, London

    Book  Google Scholar 

  32. Neuber H (1961) Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material. United States Atomic Energy Commission, Office of Technical Information, Translation Series

  33. Angeles J (1983) Synthesis of plane curves with prescribed geometric properties using periodic splines. Comput Aided Des 15(3):147–155

    Article  Google Scholar 

  34. Teng CP, Bai S, Angeles J (2008) Shape synthesis in mechanical design. Acta Polytech 47(6):56–62

    Google Scholar 

  35. Späth H (1995) One dimensional spline interpolation algorithms. A. K. Peters Ltd., Wellesley

    MATH  Google Scholar 

  36. Teng CP, Angeles J (2001) A sequential-quadratic-programming algorithm using orthogonal decomposition with Gerschgorin stabilization. J Mech Des 123(4):501–509

    Article  Google Scholar 

  37. Bidault F, Teng C, Angeles J (2001) Structural optimization of a spherical parallel manupulator using a two-level approach. In: Proceedings of the ASME 2001 design engineering technical conferences and computers and information in engineering conference, Paper No. DETC2001/DAC-21030. Pittsburgh, pp 297–305

  38. Spitas C, Spitas V (2007) A fem study of the bending strength of circular fillet gear teeth compared to trochoidal fillets produced with enlarged cutter tip radius. Mech Based Des Struct Mach 35(1):59–73

    Article  Google Scholar 

  39. Ananda K, Ravichandra R, Mustaffa M (2012) Spur gear crack propagation path analysis using finite element method. In: Proceedings of the international multi conference of engineers and computer scientists, Hong Kong, March 14–16

  40. Lewicki D, Ballarini R (1997) Effects of rim thickness on gear crack propagation path. ASME J Mech Des 119:88–95

    Article  Google Scholar 

  41. Tada H, Paris P, Irwin G (2000) Stress analysis of cracks handbook, 3rd edn. American Society Mechanical Engineers, Washington

    Book  Google Scholar 

Download references

Acknowledgments

The research reported here was conducted with the support of Grant APCPJ418901-11 from NSERC’s Automotive Partnership Canada Project. NSERC is Canada’s Natural Sciences and Engineering Research Council

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zou.

Appendix: Matrices related to the \(G^2\)-continuity conditions

Appendix: Matrices related to the \(G^2\)-continuity conditions

$$\mathbf {A}=\varDelta \theta \left[\begin{array}{lllllll} 2&1&0&0&\cdots&0&0\\ 1&4&1&0&\cdots&0&0\\ 0&1&4&1&\cdots&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots \\ 0&0&\cdots&1&4&1&0\\ 0&0&0&\cdots&1&4&1\\ 0&0&0&\cdots&0&1&2 \end{array}\right]$$
(24)
$${\mathbf{C}}= \frac{1}{\varDelta \theta } \left[\begin{array}{ccccccc} c_{11}&1&0&0&\cdots&0&0\\ 1&-2&1&0&\cdots&0&0\\ 0&1&-2&1&\cdots&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots \\ 0&0&\cdots&1&-2&1&0\\ 0&0&0&\cdots&1&-2&1\\ 0&0&0&\cdots&0&1&c_{n^{\prime \prime }n^{\prime \prime }} \end{array}\right]$$
(25)

in which \(n^{\prime \prime }=n+2\), \(c_{11}=-1-\varDelta \theta / \tan (\gamma _0)\) and \(c_{n^{\prime \prime }n^{\prime \prime }}=-1-\varDelta \theta / \tan (\gamma _{n+1})\).

$$\begin{aligned}\mathbf {P}=& \varDelta \theta \left[\begin{array}{ccccccc} \frac{1}{\varDelta \theta }&0&0&0&\cdots&0&0\\ 1&4&1&0&\cdots&0&0\\ 0&1&4&1&\cdots&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots \\ 0&0&\cdots&1&4&1&0\\ 0&0&0&\cdots&1&4&1\\ 0&0&0&\cdots&0&0& \frac{1}{\varDelta \theta }\\ \end{array}\right]\\ \mathbf {Q}= &\frac{1}{\varDelta \theta } \left[\begin{array}{ccccccc} \frac{1}{\tan (\gamma _0)}&0&0&0&\cdots&0&0\\ -3&0&3&0&\cdots&0&0\\ 0&-3&0&3&\cdots&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots \\ 0&0&\cdots&-3&0&3&0\\ 0&0&0&\cdots&-3&0&3\\ 0&0&0&\cdots&0&0& \frac{1}{\tan (\gamma _{n+1})}\\ \end{array}\right]\end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, T., Shaker, M., Angeles, J. et al. An innovative tooth root profile for spur gears and its effect on service life. Meccanica 52, 1825–1841 (2017). https://doi.org/10.1007/s11012-016-0519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0519-7

Keywords

Navigation