Skip to main content

Advertisement

Log in

The hydrodynamic and thermal characterization of a yield stress fluid in stirred tanks equipped with simple helical ribbons with two stages

  • Simulation, Optimization & Identification
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The objective of this paper is to characterize the hydrodynamic and thermal behaviors of yield stress fluids within a cylindrical agitated vessel equipped with simple helical ribbon stirrers (SHR) (one and two-stages) by means of the numerical simulation approach. For this purpose, a computational fluid dynamic simulation using the 3D finite volume technique has been carried out to solve the continuity, momentum and thermal energy equations. In this study, we have analyzed the Oldroyd and Reynolds numbers effects on the hydrodynamic and thermal behaviors for the two mentioned stirrers types. In addition, the influence of the impeller width and its clearance from the vessel wall on the velocity and thermal fields has been investigated. Velocity and thermal fields’ visualization has been presented in different (r–z) and (r–θ) planes. Moreover, the power constant and Nusselt number are correlated by a relationship relating the physical properties and the geometric ratios defining the SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\({\text{a}} = \frac{{\uplambda }}{{{\uprho{\text{ C}}}_{\text{p}} }}\) :

Thermal diffusivity (m s−2)

C = (D − da)/D:

Dimensionless clearance

\({\text{C}}_{\text{p}}\) :

Specific heat capacity (J Kg−1 K−1)

D:

Vessel diameter (m)

da :

Impeller diameter (m)

dr :

Rotor diameter (m)

g:

Acceleration of gravity (m s−2)

H:

Liquid height in the tank (m)

h:

Heat transfer coefficient (W/m2K)

hi :

Impeller height (m)

µ:

Viscosity of Bingham fluid (Pa s)

µa :

Apparent viscosity (Pa s)

N:

Rotation speed of the agitator (tr/s)

Nr :

Number of impeller ribbon

\({\text{R}} = \frac{{{\text{d}}_{\text{a}} }}{2}\) :

Impeller radius (m)

P1 :

Pressure (Pa)

Pw :

Power (w)

p:

Pitch of the ribbon (m)

ts :

Time (s)

\({\text{V}}_{\text{c}} = 2{\uppi{\text{ NR}}}\) :

Characteristic velocity (m s−1)

\({\text{V}}^{\prime}\) :

Vessel volume

w:

Ribbon width (m)

\({\bar{\uptheta }}\) :

Average temperature (K)

\({\uptheta }_{\text{i}}\) :

Initial internal temperature (K)

\({\uptheta }_{\text{w}}\) :

The vessel wall temperature (K)

\({\uptau }\) :

Shear stress (Pa)

τ0 :

Yield stress (Pa)

\({\dot{\upgamma }}\) :

Flow shear rate (s−1)

λ:

Thermal conductivity (W/mK)

ρ:

Fluid density (Kg m−3)

A = Po * Re:

Power constant

\({\text{dv}} = {\text{rdrd}}\uptheta {\text{dz}}\) :

Element volume

\({\text{F}}_{\text{o}} = \frac{2}{{{\uppi {\text{Pe}}}}}{\text{t}}\left( {\frac{{{\text{d}}_{\text{a}} }}{\text{D}}} \right)^{2}\) :

Fourier number

\({\text{Fr}} = \frac{{ 2\left( {{\uppi {\text{N}}}} \right)^{2} {\text{D}}}}{\text{g}}\) :

Froude number

G:

Viscous dissipation function

m:

Regularization parameter

\({\text{Nu}} = \frac{\text{hD}}{{\uplambda }}\) :

Nusselt number

\({\text{Od}} = \frac{{{\uptau }_{0} {\text{D}}}}{{2 {\upmu {\text{V}}}_{\text{c}} }}\) :

Oldroyd number

\({\text{Pe}} = {\text{RePr}} = \frac{{{\text{Nd}}_{\text{a}}^{2} }}{\text{a}}\) :

Peclet number

\({\text{P}}_{\text{o}} = \frac{{{\text{P}}_{\text{w}} }}{{{\uprho \text{N}}^{3} ({\text{d}}_{\text{a}} )^{5} }}\) :

Power number

\({ \Pr } = \frac{{{{\upmu \text{C}}}_{\text{p}} }}{{\uplambda }}\) :

Prandtl number

\({\text{P}}_{\text{re}} = \frac{{{\text{P}}_{1} }}{{{{\uprho }}\left( {{{\uppi \text{ND}}}} \right)^{2} }}\) :

Dimensionless pressure

(r, \({\uptheta }\), z):

Dimensionless co-ordinates (dimensional coordinates divided by D/2)

\({\text{Re}} = \frac{{{{\uprho N d}}_{\text{a}} ^{2} }}{\upmu }\) :

Reynolds number

\({\bar{\text{T}}} = \frac{{{\bar{\uptheta }} - {\uptheta }_{\text{i}} }}{{{\uptheta }_{\text{w}} - {\uptheta }_{\text{i}} }}\) :

Average dimensionless temperature

\({\text{t}} = 2{\uppi \text{Nt}}_{\text{s}}\) :

Dimensionless time

\({\text{V}}_{\text{i}}\) :

Viscosity correction factor

\({\vec{\text{V}}}({\text{U}}, {\text{V}}, {\text{W}})\) :

Dimensionless velocity vector (dimensional velocity divided by \(2{\uppi{\text{ NR}}}\))

\({\upeta }_{\text{a}} = \frac{{\upmu }_{\text{a}}}{\upmu }\) :

Dimensionless apparent viscosity

References

  1. Scott Fogler H, Nihat Gurmen M (2008) Elements of chemical reaction engineering. University of Michigan, Michigan

    Google Scholar 

  2. Delaplace G, Leuliet JC, Relandeau V (2000) Circulation and mixing times for helical ribbon impellers. Rev Exp Fluids 28:170–182

    Article  ADS  Google Scholar 

  3. Guerin P, Carreau PJ, Patterson WI, Paris J (1984) Characterization of helical impellers by circulation times. Can J Chem Eng 62:3

    Article  Google Scholar 

  4. Takahashi K, Iwaki M, Yokota T, Konno H (1989) Circulation time for pseudo-plastic liquids in a vessel equipped with a variety of helical ribbon impellers. J Chem Eng Jpn 22:413–418

    Article  Google Scholar 

  5. Curran SJ, Hayes RE, Afacan A, Williams M, Tanguy P (2000) Experimental mixing of a yield stress fluid in a laminar stirred tank. Ind Eng Chem Res 39:195–202

    Article  Google Scholar 

  6. Szulc K (2013) Optimization of geometry of helical ribbon impeller operating in the laminar flow of the liquid. Prosimy cytować jako: Inż Ap Chem 52(3):255–258

    Google Scholar 

  7. Yao W, Mishima M, Takahashi K (2001) Numerical investigation on dispersive mixing characteristics of MAXBLEND and double helical ribbons. J Chem Eng 84:565–571

    Article  Google Scholar 

  8. Minge Z, Lühong Z, Bin J, Yuguo Y, Xingang L (2008) Calculation of Metzner constant for double helical ribbon impeller by computational fluid dynamic method. Chin J Chem Eng 16(5):686–692

    Article  Google Scholar 

  9. Wang JJ, Feng LF, Gu XP, Wang K, Hu CH (2000) Power consumption of inner-outer helical ribbon impellers in viscous Newtonian and non-Newtonian fluids. J Chem Eng Sci 55:2339–2342

    Article  Google Scholar 

  10. Zhu XL, Song QA, Xu BQ, Wang K (1984) Mixing characteristics of impellers for the mixing of highly viscous non-Newtonian fluids. China Synthet Rubber Ind 7(4):255–258 (in Chinese)

    Google Scholar 

  11. Robinson M, Cleary PW (2012) Flow and mixing performance in helical ribbon mixers. J Chem Eng Sci 84:382–398

    Article  Google Scholar 

  12. Kuncewicz Cz, Rieger F, Pietrzykowski M, Stelmach J (2013) 3D/2D hybrid model for ribbon impellers operating in laminar regime. J Chem Eng Proc 73:50–58

    Article  Google Scholar 

  13. Kuncewicz Cz, Pietrzykowski M (2010) A 3D/2D hybrid model for flat blade impellers operating in the laminar flow. J Chem Proc Eng 3(1):289–302

    Google Scholar 

  14. Kuncewicz Cz, Pietrzykowski M (2010) Verification of a 3D/2D hybrid model for laminar mixing range. J Chem Proc Eng 31:303–315

    Google Scholar 

  15. Slemenik Perše L, Zumer M (2004) Mixing and viscosity determinations with helical ribbon impeller. Chem Biochem Eng Q 18(4):363–371

    Google Scholar 

  16. Coyle CK, Hirschland HE, Michel BJ, Oldschue JY (1970) Heat transfer to jackets with close clearance impellers in viscous materials. Can J Chem Eng 48:275

    Article  Google Scholar 

  17. Shamlou PA, Edwards MF (1986) Heat transfer to viscous Newtonian and non-Newtonian fluids for helical ribbon mixers. J Chem Eng Sci 41(8):1957–1967

    Article  Google Scholar 

  18. Nagata S (1975) Mixing principles and applications. Wiley, New York

    Google Scholar 

  19. Carreau PJ, Patterson I, Yap CY (1976) Mixing of viscoelastic fluids with helical- ribbon agitators. I-Mixing time and flow patterns. Can J Chem Eng 54:3

    Article  Google Scholar 

  20. Ishibashi K, Yamanaka A, Mitsuishi N (1979) Heat transfer in agitated vessels with special types of impellers. J Chem Eng Jpn 12(2):230–235

    Article  Google Scholar 

  21. Bourne JR, Butler H (1969) Power consumption of helical ribbon impellers in viscous liquids. Trans Inst Chem Eng 47:263–270

    Google Scholar 

  22. Soliman MG (1985) Agitation de fluides visqueux pseudo-plastiques par un double ruban hélicoïdal. Thèse de docteur ingénieur de l’Institut National Polytechnique de Toulouse

  23. Niedzielska A, Kuncewicz Cz (2005) Heat transfer and power consumption for ribbon impellers. Mixing efficiency. J Chem Eng Sci 60:2439–2448

    Article  Google Scholar 

  24. Anne-Archard D, Marouche M, Boisson HC (2006) Hydrodynamics and Metzner–Otto correlation in stirred vessels for yield stress fluids. Chem Eng J 125:15–24

    Article  Google Scholar 

  25. Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. AIChE J 3(1):3–10

    Article  Google Scholar 

  26. Ameur H, Bouzit M, Ghenaim A (2013) Hydrodynamics in a vessel stirred by simple and double helical ribbon impellers. Cent Eur J Eng 3(1):87–98

    Google Scholar 

  27. Ameur H, Bouzit M (2013) Power consumption for stirring shear thinning fluids by two-blade impeller. Energy J 50:326–332

    Article  Google Scholar 

  28. Bingham EC (1922) Fluidity and plasticity. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  29. Baccar M, Mseddi M, Abid MS (2001) Contribution numérique à l’étude hydrodynamique et thermique des écoulements turbulents induits par une turbine radiale en cuve agitée. Int J Therm Sci 40:753–772

    Article  Google Scholar 

  30. Harlow FH, Welch JE (1965) Numerical calculation of time-dependant viscous incompressible flow of fluids with free surface. Phys Fluids 8(12):2182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Douglas J, Gunn JE (1964) A general formulation of alternating direction implicit methods. Num Math 6:428–453

    Article  MATH  Google Scholar 

  32. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comp 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  33. Braza M (1981) Simulation numérique du décollement instationnaire externe par une formulation vitesse-pression. Application à l’écoulement autour d’un cylindre. Thèse de Docteur Ingenieur. Institut National Polytechnique de Toulouse

  34. Ayadi A (2011) Exact analytic solutions of the lubrication equations for squeeze-flow of a biviscous fluid between two parallel disks. J Non-Newton Fluid Mech 166:1253–1261

    Article  MATH  Google Scholar 

  35. Tanner RI, Milthorpe JF (1983) Simulation of the flow of fluids with yield stress. Num Meth Lam Turb Flow. In: Taylor C, Johnson JA, Smith WR (eds) Proceedings of 3rd international conference on Seattle, Pineridge Press, Swansea, pp 680–690

  36. Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    Article  ADS  MATH  Google Scholar 

  37. Bertrand F, Tanguy PA, Brito de la Fuente E, Carreau P (1999) Numerical modeling of the mixing flow of second-order fluids with helical ribbon impellers. J Comput Methods Appl Mech Eng 180(15):267–280

    Article  ADS  MATH  Google Scholar 

  38. Kappel M (1979) Development and application of a method for measuring the mixture quality of miscible liquids. III. Application of the new method for highly viscous Newtonian liquids. Int Chem Eng J 19:571–590

    Google Scholar 

  39. Kuncewicz Cz, Pietrzykowski M, Szulc K (2001) Modelowanie hydrodynamiki mieszalnika dla mieszadeł wst egowych pracujacych w ruchu laminarnym. Inżynieria Chemiczna i Procesowa 22:461–481

    Google Scholar 

  40. Von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Göttin Nachr Math Phys 1:582–592

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gammoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammoudi, A., Ayadi, A. & Baccar, M. The hydrodynamic and thermal characterization of a yield stress fluid in stirred tanks equipped with simple helical ribbons with two stages. Meccanica 52, 1743–1766 (2017). https://doi.org/10.1007/s11012-016-0506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0506-z

Keywords

Navigation