Skip to main content
Log in

How graphene flexes and stretches under concomitant bending couples and tractions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We propose a geometrically and materially nonlinear discrete mechanical model of graphene that assigns an energetic cost to changes in bond lengths, bond angles, and dihedral angles. We formulate a variational equilibrium problem for a rectangular graphene sheet with assigned balanced forces and couples uniformly distributed over opposite side pairs. We show that the resulting combination of stretching and bending makes achiral graphene easier to bend and harder (easier) to stretch for small (large) traction loads. Our general developments hold for a wide class of REBO potentials; we illustrate them in detail by numerical calculations performed in the case of a widely used 2nd-generation Brenner potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In this connection, we note that, reversing the force distribution shown in Fig. 1 does not necessarily induce hardening, because the problem nonlinearity demands for a recalculation of the solution with a priori unpredictable effetcs.

  2. In fact, we repeat, our procedure is general enough to accommodate a variety of diehedral-angle sensitive REBO potentials; consequently, it can be adopted to find out whether an intermolecular potential in the class specified by (1920) does predict the peculiar behavior of graphene predicted in [38].

  3. Couples and forces are uniformly distributed in a discrete sense.

  4. The value of this parameter depends slightly on the intermolecular potential of one’s choice; for the 2nd-generation Brenner potential we use later on in our computations, \(r_0=0.14204\) nm.

  5. Here we have taken relations (11)\(_{4,5}\) into account; later on, when we deal with zigzag bending, we shall use another specialization of (19) and (20).

  6. For an example of such assumptions, which are fulfilled by the stored-energy functional we will use to obtain the representative results reported in Sect. 6, see [10].

References

  1. Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69:115415

    Article  ADS  Google Scholar 

  2. Bajaj C, Favata A, Podio-Guidugli P (2013) On a nanoscopically-informed shell theory of carbon nanotubes. Europ J Mech A Solids 42:137–157

    Article  ADS  MathSciNet  Google Scholar 

  3. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458

    Article  ADS  Google Scholar 

  4. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Cond Matter 14(4):783

    Article  ADS  Google Scholar 

  5. Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502

    Article  ADS  Google Scholar 

  6. Chang T, Geng J, Guo X (2005) Chirality- and size-dependent elastic properties of singlewalled carbon nanotubes. Appl Phys Lett 87:251929

    Article  ADS  Google Scholar 

  7. Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540

    Article  ADS  MATH  Google Scholar 

  8. Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58(9):1422–1433

    Article  ADS  MathSciNet  Google Scholar 

  9. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51(6):1059–1074

    Article  ADS  MATH  Google Scholar 

  10. Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2016) Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J Elast. doi:10.1007/s10659-015-9568-8

    MathSciNet  MATH  Google Scholar 

  11. Favata A, Micheletti A, Ryu S, Pugno NM (2016) An analytical benchmark and a Mathematica program for MD codes: testing LAMMPS on the 2nd generation Brenner potential. Comput Phys Commun. doi:10.1016/j.cpc.2016.06.005

    Google Scholar 

  12. Favata A, Podio-Guidugli P (2014) A shell theory for chiral single-wall carbon nanotubes. Europ J Mech A Solids 45:198–210

    Article  ADS  MathSciNet  Google Scholar 

  13. Favata A, Podio-Guidugli P (2015) A shell theory for carbon nanotube of arbitrary chirality. Adv Struct Mater 45:155–167

    Article  MathSciNet  Google Scholar 

  14. Geng J, Chang T (2006) Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys Rev B 74:245428

    Article  ADS  Google Scholar 

  15. Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Design 31(10):4646–4654

    Article  MATH  Google Scholar 

  16. Georgantzinos SK, Giannopoulos GI, Katsareas DE, Kakavas PA, Anifantis NK (2011) Size-dependent non-linear mechanical properties of graphene nanoribbons. Comput Mater Sci 50(7):2057–2062

    Article  Google Scholar 

  17. Giannopoulos GI, Liosatos IA, Moukanidis AK (2011) Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Phys E 1:124–134

    Article  Google Scholar 

  18. Giannopoulos GI (2012) Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput Mater Sci 1:388–395

    Article  Google Scholar 

  19. Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchyborn rule. Int J Solids Struct 43(5):1276–1290

    Article  MATH  Google Scholar 

  20. Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413

    Article  ADS  Google Scholar 

  21. Jomehzadeh E, Afshar MK, Galiotis C, Shi X, Pugno NM (2013) Nonlinear softening and hardening nonlocal bending stiffness of an initially curved monolayer graphene. Int J Non-Linear Mech 56:123–131

    Article  Google Scholar 

  22. Kudin KN, Scuseria GE, Yakobson BI (2001) \(C_{2}{F}\), BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406

    Article  ADS  Google Scholar 

  23. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  ADS  Google Scholar 

  24. Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13:2418–2422

    Article  ADS  Google Scholar 

  25. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    Article  ADS  Google Scholar 

  26. Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D 42(10):102002

    Article  ADS  Google Scholar 

  27. Lu Q, Huang R (2009) Nonlinear mechanics of single-atomic-layer graphene sheets. Int J Appl Mech 01(03):443–467

    Article  Google Scholar 

  28. Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605

    Article  Google Scholar 

  29. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880

    Article  Google Scholar 

  30. Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149(12):91–95

    Article  ADS  Google Scholar 

  31. Sandeep S, Patel BP (2015) Nonlinear elastic properties of graphene sheet under finite deformation. Compos Struct 119:412–421

    Article  Google Scholar 

  32. Scarpa F, Adhikari S, Srikantha Phani A (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6):065709

    Article  ADS  Google Scholar 

  33. Scarpa F, Adhikari S, Gil AJ, Remillat C (2010) The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12):125702

    Article  ADS  Google Scholar 

  34. Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for free standing monolayer graphene: Geometrical and material linearization with closed form solutions. Int J Eng Sci 85:224–233

    Article  Google Scholar 

  35. Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int J Nonliner Mech 67:186

    Article  Google Scholar 

  36. Sfyris D, Galiotis C, Curvature-dependent surface energy for free-standing monolayer graphene. Math Mech Solids. doi:10.1177/1081286514537667 (in press)

  37. Shen L, Li J (2004) Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys Rev B 69:045414

    Article  ADS  Google Scholar 

  38. Shi X, Peng B, Pugno NM, Gao H (2012) Stretch-induced softening of bending rigidity in graphene. Appl Phys Lett 100:191913

    Article  ADS  Google Scholar 

  39. Singh S, Patel BP (2015) Atomistic-continuum coupled model for nonlinear analysis of single layer graphene sheets. Int J Non-Linear Mech 76:112–119

    Article  Google Scholar 

  40. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991

    Article  ADS  Google Scholar 

  41. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566

    Article  ADS  Google Scholar 

  42. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680

    Article  ADS  Google Scholar 

  43. Tu Z, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective young’s moduli dependent on layer number. Phys Rev B 65:233407

    Article  ADS  Google Scholar 

  44. Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 42:5451–5461

    Article  MATH  Google Scholar 

  45. Wang JB, Guo X, Zhang HW, Wang L, Liao JB (2006) Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy–Born rule. Phys Rev B 73:115428

    Article  ADS  Google Scholar 

  46. Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407

    Article  ADS  Google Scholar 

  47. Wei Y, Wang B, Wu J, Yang R, Dunn ML (2013) Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13:26

    Article  ADS  Google Scholar 

  48. Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092

    Article  MATH  Google Scholar 

  49. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  ADS  Google Scholar 

  50. Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39(1314):3893–3906

    Article  MATH  Google Scholar 

  51. Zhou J, Huang R (2008) Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 56(4):1609–1623

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

N.M.P. is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM No. 279985, ERC PoC 2015 SILKENE No. 693670) and by the European Commission under the Graphene Flagship (WP14 Polymer Composites, No. 696656).

Funding

N.M.P. is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM No. 279985, ERC PoC 2015 SILKENE No. 693670) and by the European Commission under the Graphene Flagship (WP14 Polymer Composites, No. 696656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Favata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favata, A., Micheletti, A., Podio-Guidugli, P. et al. How graphene flexes and stretches under concomitant bending couples and tractions. Meccanica 52, 1601–1624 (2017). https://doi.org/10.1007/s11012-016-0503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0503-2

Keywords

Navigation