Skip to main content
Log in

Trajectory tracking control using velocity observer and disturbances observer for uncertain robot manipulators without tachometers

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with trajectory tracking control for rigid robot manipulators with model uncertainty and subject to external disturbances. The approach suggested herein does not require velocity measurement, because these robots are not equipped by tachometers for velocity measurement. For this purpose, two observers are proposed. The first is a velocity observer to estimate the missing velocity, and the second one is a disturbance observer to estimate the disturbance. Thereafter, these observers are integrated with the controller. Furthermore, semi-global asymptotic stability conditions of the composite controller consisting of a nonlinear controller, the velocity observer and the disturbance observer are established, and an estimate region of attraction is also given. This proof is based on Lyapunov theory. Finally, simulation results on two-links manipulator are provided to illustrate the effectiveness of the velocity observer based control using disturbance estimation (namely VOBCDE), when the Coulomb and viscous friction is considered as an external disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Arimoto S, Miyazaki F (1984) Stability and robustness of PID feedback control of robot manipulators of sensory capability. In: The 1st international symposium of robotics research. MIT Press, Cambridge

  2. Luh JYS, Walker MW, Paul RCP (1980) Resolved-acceleration control of mechanical manipulators. IEEE Trans Autom Control 25(3):468–474

    Article  MATH  Google Scholar 

  3. Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: a tutorial. Automatica 25(6):877–888

    Article  MathSciNet  MATH  Google Scholar 

  4. Slotine JJE, Sastry SS (1983) Tracking control of nonlinear systems using sliding surface with application to robot manipulators. Int J Control 38:465–492

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouakrif F (2011) D-type iterative learning control without resetting condition for robot manipulators. Robotica 29(7):975–980

    Article  Google Scholar 

  6. Bouakrif F (2011) Iterative learning control with forgetting factor for robot manipulators with strictly unknown model. Int J Robot Autom 26(3):264–271

    Google Scholar 

  7. Bouakrif F (2012) Commande par apprentissage itératif des robots manipulateurs, in French, Editions Universitaires Européennes, Germany. ISBN:978-613-1-50705-2

  8. Bouakrif F, Boukhetala D, Boudjema F (2008) Passivity-based controller-observer for robot manipulators. Information and communication technologies: from theory to applications, ICTTA 2008, 3rd international conference on, Damascus, pp 1–5

  9. Ryu JH, Kwon DS, Hannaford B (2004) Stable teleoperation with time domain passivity control. IEEE Trans Robot Autom 20:365–373

    Article  Google Scholar 

  10. Bouakrif F, Boukhetala D, Boudjema F (2010) Passivity based controller-observer for robot manipulators. Int J Robot Autom 25(1):1–8

    MATH  Google Scholar 

  11. Paden B, Panja R (1988) Globally asymptotically stable’PD+’ controller for robot manipulators. Int J Control 47:1697–1712

    Article  MATH  Google Scholar 

  12. Dorato P (1987) Robust control. IEEE Press, New York

    Google Scholar 

  13. Colbalugh R, Glass K, Seraji H (1995) Performance-based adaptive tracking control of robot manipulators. J Robot Syst 12:517–530

    Article  MATH  Google Scholar 

  14. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938

    Article  Google Scholar 

  15. Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710

    Article  Google Scholar 

  16. Bouakrif F (2016) Iterative learning control for affine and non-affine nonlinear systems. In: Vaidyanathan S, Volos C (eds) Advances and applications in nonlinear control systems, volume 635 of the series studies in computational intelligence, vol 635. Springer, Berlin, pp 555–574

    Chapter  Google Scholar 

  17. Bouakrif F, Zasadzinski M (2016) Trajectory tracking control for perturbed robot manipulators using iterative learning method. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8550-3

    Google Scholar 

  18. Krener AJ, Isidori A (1983) Linearization by output injection and nonlinear observers. Syst Control Lett 3:47–52

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawrence DA (1992) On a nonlinear observer with pseudo-linearized error dynamics. In: Proceedings of 31st IEEE conference on decision and control. Tucson, USA, pp 751–756

  20. Krener AJ, Respondek W (1985) Nonlinear observers with linearized error dynamics. SIAM J Control Optim 23(2):197–216

    Article  MathSciNet  MATH  Google Scholar 

  21. Hammami MA (1993) Stabilization of a class of nonlinear systems using an observer design. In: Proceedings of 32nd IEEE conference on decision and control, vol. 3. San Antonio, TX, pp 1954–1959

  22. Gauthier JP, Hammouri H, Othman S (1991) A simple observer for nonlinear system: applications to bioreactors. IEEE Trans Autom Control 37(6):875–880

    Article  MathSciNet  MATH  Google Scholar 

  23. Nicosia S, Tornambb A, Valigi P (1990) Experimental results in state estimation of industrial robots. In: Proceedings of 29th IEEE conference on decision and control, pp 360–365

  24. Yu W, Li X (2006) PD Control of robot with velocity estimation and uncertainties compensation. Int J Robot Autom 21(1):1–9

    MathSciNet  Google Scholar 

  25. Bouakrif F, Boukhetala D, Boudjema F (2013) Velocity observer based iterative learning control for robot manipulators. Int J Syst Sci 42(2):214–222

    Article  MathSciNet  MATH  Google Scholar 

  26. Khelfi MF, Zasadzinski M, Rafaralahy H, Richard E, Darouach M (1996) Reduced-order observer-based point-to-point and trajectory controllers for robot manipulators. Control Eng Pract 4(7):991–1000

    Article  Google Scholar 

  27. Shen Y, Xia X (2008) Semi-global finite-time observers for nonlinear systems. Automatica 45(12):3152–3156

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen Y, Shen W, Jiang M, Huang Y (2010) Semi-global finite-time observers for multi-output nonlinear systems. Int J Robust Nonlinear Control 20(7):789–801

    Article  MathSciNet  MATH  Google Scholar 

  29. Perruquetti W, Floquet T, Moulay E (2008) Finite-time observer: application to secure communication. IEEE Trans Autom Control 53(1):356–360

    Article  MathSciNet  Google Scholar 

  30. Shen Y, Huang Y (2009) Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans Autom Control 54(11):2621–2625

    Article  MathSciNet  Google Scholar 

  31. Bouakrif F (2013) Iterative learning control for MIMO nonlinear systems with arbitrary relative degree and no states measurement. Complexity 19(1):37–45

    Article  MathSciNet  Google Scholar 

  32. Hong Y, Xu Y, Huang J (2002) Finite-time control for robot manipulators. Syst Control Lett 46(4):243–253

    Article  MathSciNet  MATH  Google Scholar 

  33. Kelly R, Santibáñez V, Loría A (2005) Control of robot manipulators in joint space, Advanced textbooks in control and signal processing. Springer, Berlin

    Google Scholar 

  34. Berghuis H (1993) Model based control: from theory to practice, Ph.D. thesis, University of Twent, the Netherlands

  35. Choi JY, Uh J, Lee JS (2001) Iterative learning control of robot manipulator with I-type parameter estimator. In: Proceedings of the America control conference, pp 646–651

  36. Liuzzo S, Tomei P (2005) A global adaptive learning control for robotic manipulators. In: Proceedings of the 44th IEEE conference on decision and control, and the European control Conference, Seville, Spain, pp 3596–3601

  37. Lozano R, Taoutaou D (2001) Commande adaptative et application. Hermes Science Publications

  38. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  39. Nicosia S, Tomei P (1990) Robot control by using only joint position measurements. IEEE Trans Autom Control 35(9):1058–1061

    Article  MathSciNet  MATH  Google Scholar 

  40. Berghuis H, Nijmeijer H (1993) A passivity approach to controller-observer design for robot. IEEE Trans Robot Autom 9(6):740–754

    Article  Google Scholar 

  41. Xian B, Queiroz M, Dawson D, McIntyre M (2004) A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. Automatica 40(4):695–700

    Article  MathSciNet  MATH  Google Scholar 

  42. Nikoobin A, Haghighi R (2009) Lyapunov based nonlinear disturbance observer for serial n-link robot manipulators. J Intell Robot Syst 55:135–153

    Article  MATH  Google Scholar 

  43. Karnopp D (1985) Computer simulation of strick-stip friction in mechanical dynamic systems. ASME J Dyn Syst Meas Control 107:100–103

    Article  Google Scholar 

  44. Lim S, Dawson D, Anderson K (1996) Re-examining the Nicosia-Tomei robot observer-controller from a backstepping perspective. IEEE Trans Control Syst Technol 4:304–310

    Article  Google Scholar 

  45. Canudas de Wit CCC, Fixot N (1992) Adaptive control for robot manipulators via velocity estimated feedback. IEEE Trans Autom Control 37:1234–1237

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Bouakrif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouakrif, F. Trajectory tracking control using velocity observer and disturbances observer for uncertain robot manipulators without tachometers. Meccanica 52, 861–875 (2017). https://doi.org/10.1007/s11012-016-0462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0462-7

Keywords

Navigation