Skip to main content
Log in

Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, vibration features of variable thickness rectangular viscoelastic nanoplates are studied. In order to consider the small-scale and the transverse shear deformation effects, governing differential equations and relevant boundary conditions are adopted based on the nonlocal elasticity theory in relation to first-order shear deformation theory of plates. The numerical solution for the nanoplate vibration frequencies is proposed applying the differential quadrature method, as a simple, effective and precise numerical tool. The present formulation and solution method are validated showing their fast convergence rate and comparison of results, in limited cases, using the available literature. Excellent agreement between the obtained and available results is observed. The effects of structural damping coefficient, boundary conditions, aspect ratio, nonlocal and variable thickness parameters on viscoelastic nanoplates vibration behaviour are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  ADS  Google Scholar 

  2. Sakhaee-Pour A, Ahmadian M, Vafai A (2008) Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun 145(4):168–172

    Article  ADS  Google Scholar 

  3. Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei Z, Sheehan P, Houston BH (2008) Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett 8(10):3441–3445

    Article  ADS  Google Scholar 

  4. Milaninia KM, Baldo MA, Reina A, Kong J (2009) All graphene electromechanical switch fabricated by chemical vapor deposition. Appl Phys Lett 95(18):183105

    Article  ADS  Google Scholar 

  5. Nemes-Incze P, Osváth Z, Kamarás K, Biró L (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46(11):1435–1442

    Article  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos SA, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  ADS  Google Scholar 

  7. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673

    Article  ADS  Google Scholar 

  8. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21(31):3159–3164

    Article  Google Scholar 

  9. Ni ZH, Wang HM, Ma Y, Kasim J, Wu YH, Shen ZX (2008) Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2(5):1033–1039

    Article  Google Scholar 

  10. Arroyo M, Belytschko T (2005) Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6):455–469

    Article  MathSciNet  MATH  Google Scholar 

  11. Sudak L (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94(11):7281–7287

    Article  ADS  Google Scholar 

  12. Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2):288–307

    Article  MATH  Google Scholar 

  13. Setoodeh A, Khosrownejad M, Malekzadeh P (2011) Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Phys E 43(9):1730–1737

    Article  Google Scholar 

  14. Wang CM, Duan W (2008) Free vibration of nanorings/arches based on nonlocal elasticity. J Appl Phys 104(1):014303

    Article  ADS  Google Scholar 

  15. Behfar K, Naghdabadi R (2005) Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos Sci Technol 65(7):1159–1164

    Article  Google Scholar 

  16. Aghababaei R, Reddy J (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326(1):277–289

    Article  ADS  Google Scholar 

  17. Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375(1):53–62

    Article  ADS  Google Scholar 

  18. Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  19. Eringen AC (2002) Nonlocal continuum field theories. Springer, Berlin

    MATH  Google Scholar 

  20. Chen Y, Lee JD, Eskandarian A (2004) Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct 41(8):2085–2097

    Article  MATH  Google Scholar 

  21. Pradhan S, Phadikar J (2009) Nonlocal elasticity theory for vibration of nanoplates. J Sound Vib 325(1):206–223

    Article  ADS  MATH  Google Scholar 

  22. Murmu T, Pradhan S (2009) Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Phys E 41(8):1628–1633

    Article  Google Scholar 

  23. Wang Y, Li F-M, Wang Y-Z (2015) Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Phys E 67:65–76

    Article  Google Scholar 

  24. Murmu T, Pradhan S (2009) Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity. J Appl Phys 106(10):104301

    Article  ADS  Google Scholar 

  25. Jomehzadeh E, Saidi A (2011) Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates. Compos Struct 93(2):1015–1020

    Article  Google Scholar 

  26. Malekzadeh P, Setoodeh A, Beni AA (2011) Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos Struct 93(7):1631–1639

    Article  Google Scholar 

  27. Phung-Van P, Nguyen-Thoi T, Luong-Van H, Thai-Hoang C, Nguyen-Xuan H (2014) A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Comput Methods Appl Mech Eng 272:138–159

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Luong-Van H, Nguyen-Thoi T, Liu G, Phung-Van P (2014) A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Eng Anal Bound Elem 42:8–19

    Article  MathSciNet  MATH  Google Scholar 

  29. Phung-Van P, Abdel-Wahab M, Liew K, Bordas S, Nguyen-Xuan H (2015) Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos Struct 123:137–149

    Article  Google Scholar 

  30. Murmu T, Pradhan S (2009) Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Phys E 41(8):1451–1456

    Article  Google Scholar 

  31. Janghorban M, Zare A (2011) Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method. Phys E 43(9):1602–1604

    Article  Google Scholar 

  32. Su Y, Wei H, Gao R, Yang Z, Zhang J, Zhong Z, Zhang Y (2012) Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon 50(8):2804–2809

    Article  Google Scholar 

  33. Pouresmaeeli S, Ghavanloo E, Fazelzadeh S (2013) Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos Struct 96:405–410

    Article  Google Scholar 

  34. Malekzadeh P (2011) Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method. Compos Struct 93(4):1246–1254

    Article  Google Scholar 

  35. Sumelka W, Zaera R, Fernández-Sáez J (2015) A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics. Meccanica 50(9):2309–2323

    Article  MathSciNet  MATH  Google Scholar 

  36. Pourseifi M, Rahmani O, Hoseini S (2015) Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5):1351–1369

    Article  MathSciNet  MATH  Google Scholar 

  37. Malik M, Bert C (1996) Implementing multiple boundary conditions in the DQ solution of higher-order PDEs: application to free vibration of plates. Int J Numer Methods Eng 39(7):1237–1258

    Article  MATH  Google Scholar 

  38. Wang X, Bert C (1993) A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. J Sound Vib 162(3):566–572

    Article  ADS  MATH  Google Scholar 

  39. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49(1):1–28

    Article  ADS  Google Scholar 

  40. Shu C (2012) Differential quadrature and its application in engineering. Springer, Berlin

    Google Scholar 

  41. Singh B, Saxena V (1996) Transverse vibration of a rectangular plate with bidirectional thickness variation. J Sound Vib 198(1):51–65

    Article  ADS  Google Scholar 

  42. Mlzusawa T (1993) Vibration of rectangular Mindlin plates with tapered thickness by the spline strip method. Comput Struct 46(3):451–463

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baghani.

Appendices

Appendix 1: DQM brief view

Consider a continuous function f(x, y) consists of two different coordinates x and y. Based on DQM, the rth order derivative of f relative to x and the (r + s)th order derivative of f with respect to x and y are estimated as [39, 40]

$$\begin{aligned} \left. {\frac{{\partial^{r} f}}{{\partial x^{r} }}} \right|_{{(x_{i} ,y_{j} )}} & = \sum\limits_{m = 1}^{{N_{x} }} {A_{im}^{(r)} f(x_{m} ,y_{j} )} = \sum\limits_{m = 1}^{{N_{x} }} {A_{im}^{(r)} f_{mj} } , \\ \left. {\frac{{\partial^{(r + s)} f}}{{\partial x^{r} \partial y^{s} }}} \right|_{{(x_{i} ,y_{j} )}} & = \sum\limits_{n = 1}^{{N_{y} }} {\sum\limits_{m = 1}^{{N_{x} }} {A_{im}^{(r)} \bar{A}_{jn}^{(s)} f(x_{m} ,y_{n} )} } = \sum\limits_{n = 1}^{{N_{y} }} {\sum\limits_{m = 1}^{{N_{x} }} {A_{im}^{(r)} \bar{A}_{jn}^{(s)} f_{mn} } } \\ \end{aligned}$$
(38a, b)

where N x and N y are the number of grid points along the x and y-directions, respectively. \(A_{ij}^{(r)}\) and \(\bar{A}_{ij}^{(r)}\) express weight coefficients relevant to the rth order derivative in the x- and y-directions, respectively. Based on the law of Shu [40], the weight coefficients in the ξ-direction (ξ = x or y) are determined as follows.

If r = 1, i.e., for the 1st order derivative,

$$A_{ij}^{(1)} = \frac{{M^{(1)} (\xi_{i} )}}{{(\xi_{i} - \xi_{j} )M^{(1)} (\xi_{j} )}}\quad \, for\quad i \ne j\quad and\quad \, i,j = 1,2, \ldots ,N_{\xi }$$
(39)

and

$$A_{ii}^{(1)} = - \sum\limits_{j = 1(j \ne i)}^{{N_{\xi } }} {A_{ij}^{(1)} } \quad \, for\quad i = j\quad and\quad i = 1,2, \ldots ,N_{\xi }$$
(40)

where \(M^{(1)} (\xi_{i} )\) is the 1st order derivative of \(M(\xi_{i} )\), expressed as follows

$$M(\xi ) = \prod\limits_{j = 1}^{{N_{\xi } }} {(\xi - \xi_{j} )} , \, M^{(1)} (\xi_{k} ) = \prod\limits_{j = 1(j \ne k)}^{{N_{\xi } }} {(\xi_{k} - \xi_{j} )}$$
(41a, b)

If r = 2, i.e., for the 2nd order derivative,

$$A_{ij}^{(2)} = 2A_{ij}^{(1)} \left( {A_{ii}^{(1)} - \frac{1}{{\xi_{i} - \xi_{j} }}} \right)\quad for\quad i \ne j\quad and\quad i,j = 1,2, \ldots ,N_{\xi }$$
(42)

and

$$A_{ii}^{(2)} = - \sum\limits_{j = 1(j \ne i)}^{{N_{\xi } }} {A_{ij}^{(2)} } \quad for\quad i = 1,2, \ldots ,N_{\xi }$$
(43)

If r > 2, i.e., for the higher order derivatives, the weight coefficients are determined via the following simple recursive ratios

$$A_{ij}^{(3)} = \sum\limits_{k = 1}^{{N_{\xi } }} {A_{ik}^{(1)} } A_{kj}^{(2)} ,\quad A_{ij}^{(4)} = \sum\limits_{k = 1}^{{N_{\xi } }} {A_{ik}^{(1)} } A_{kj}^{(3)} \quad for\quad i,j = 1,2, \ldots N_{\xi }$$
(44a, b)

An important item in the application of DQM, is the mode of grid points selection. It has been shown that the grid point distribution, which is based on the well accepted Gauss–Chebyshev–Lobatto points [40], provides sufficient and precise results. According to this grid point’s distribution, the grid point’s coordinates are as follows

$$\begin{aligned} \xi_{i} & = \frac{1}{2}\left\{ {1 - \cos \left[ {\frac{{\pi \left( {i - 1} \right)}}{{N_{\xi } - 1}}} \right]} \right\}, \quad i = 1,2, \ldots ,N_{\xi } \\ \eta_{j} & = \frac{1}{2}\left\{ {1 - \cos \left[ {\frac{{\pi \left( {j - 1} \right)}}{{N_{\eta } - 1}}} \right]} \right\},\quad j = 1,2, \ldots ,N_{\eta } \, \\ \end{aligned}$$
(45a, b)

Appendix 2: Exact solution for uniform viscoelastic nanoplates

For constant-thickness viscoelastic nanoplates with fully simply supported edges, one may derive the nonlocal equations of motion as follows

$$\begin{aligned} & \frac{{\partial^{2} \psi^{x} }}{{\partial \xi^{2} }} + \chi \left( {Q_{12} + Q_{33} } \right)\frac{{\partial^{2} \psi^{y} }}{\partial \xi \partial \eta } + \chi^{2} Q_{33} \frac{{\partial^{2} \psi^{x} }}{{\partial \eta^{2} }} - Q_{44} \left( {\psi^{x} + \frac{\partial W}{\partial \xi }} \right) \\ & \quad +\, \frac{{\Omega^{2} }}{{1 + ig^{ * } \Omega }}\left[ {\psi^{x} - \gamma^{2} \left( {\frac{{\partial^{2} \psi^{x} }}{{\partial \xi^{2} }} + \chi^{2} \frac{{\partial^{2} \psi^{x} }}{{\partial \eta^{2} }}} \right)} \right] = 0 \\ \end{aligned}$$
(46)
$$\begin{aligned} & Q_{33} \frac{{\partial^{2} \psi^{y} }}{{\partial \xi^{2} }} + \chi \left( {Q_{12} + Q_{33} } \right)\frac{{\partial^{2} \psi^{x} }}{\partial \xi \partial \eta } + \chi^{2} Q_{22} \frac{{\partial^{2} \psi^{y} }}{{\partial \eta^{2} }} - Q_{55} \left( {\psi^{y} + \chi \frac{\partial W}{\partial \eta }} \right) \\ & \quad +\, \frac{{\Omega^{2} }}{{1 + ig^{ * } \Omega }}\left[ {\psi^{y} - \gamma^{2} \left( {\frac{{\partial^{2} \psi^{y} }}{{\partial \xi^{2} }} + \chi^{2} \frac{{\partial^{2} \psi^{y} }}{{\partial \eta^{2} }}} \right)} \right] = 0 \\ \end{aligned}$$
(47)
$$Q_{44} \left( {\frac{{\partial \psi^{x} }}{\partial \xi } + \frac{{\partial^{2} W}}{{\partial \xi^{2} }}} \right) + \chi Q_{55} \left( {\frac{{\partial \psi^{y} }}{\partial \eta } + \chi \frac{{\partial^{2} W}}{{\partial \eta^{2} }}} \right) + \frac{{\bar{I}\Omega^{2} }}{{1 + ig^{ * } \Omega }}\left[ {W - \gamma^{2} \left( {\frac{{\partial^{2} W}}{{\partial \xi^{2} }} + \chi^{2} \frac{{\partial^{2} W}}{{\partial \eta^{2} }}} \right)} \right] = 0$$
(48)

Employing the Navier method, the solution of the above equations can be written as

$$\begin{aligned} W & = \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{\infty } {\bar{W}_{mn} \sin \left( {m\pi \xi } \right)\sin \left( {n\pi \eta } \right)} } \\ \psi^{x} & = \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{\infty } {\bar{\psi }_{mn}^{x} \cos \left( {m\pi \xi } \right)\sin \left( {n\pi \eta } \right)} } \\ \psi^{y} & = \sum\limits_{n = 1}^{\infty } {\sum\limits_{m = 1}^{\infty } {\bar{\psi }_{mn}^{y} \sin \left( {m\pi \xi } \right)\cos \left( {n\pi \eta } \right)} } \\ \end{aligned}$$
(49a{-}c)

Substituting for W, \(\psi^{x}\) and \(\psi^{y}\) from Eq. (49) into Eqs. (46)–(48), yields

$$\left( {\left[ {\begin{array}{*{20}l} {\Theta_{11} } &\quad {\Theta_{12} } &\quad {\Theta_{13} } \\ {\Theta_{21} } &\quad {\Theta_{22} } &\quad {\Theta_{23} } \\ {\Theta_{31} } &\quad {\Theta_{32} } &\quad {\Theta_{33} } \\ \end{array} } \right] - \bar{\Omega }\left[ {\begin{array}{*{20}l} {\Xi_{11} } &\quad 0 & \quad 0 \\ 0 & \quad {\Xi_{22} } & \quad 0 \\ 0 & \quad 0 & \quad {\Xi_{33} } \\ \end{array} } \right]} \right)\left\{ {\begin{array}{*{20}l} {\bar{\psi }_{mn}^{x} } \\ {\bar{\psi }_{mn}^{y} } \\ {\bar{W}_{mn} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} 0 \\ 0 \\ 0 \\ \end{array} } \right\}$$
(50)

where

$$\begin{aligned} \Theta_{11} & = Q_{44} + \left( {m\pi } \right)^{2} + \left( {n\pi } \right)^{2} \chi^{2} Q_{33} ,\,\Theta_{22} = Q_{55} + \left( {m\pi } \right)^{2} Q_{33} + \left( {n\pi } \right)^{2} \chi^{2} Q_{22} , \\ \Theta_{33} & = \left( {m\pi } \right)^{2} Q_{44} + \left( {n\pi } \right)^{2} \chi^{2} Q_{55} ,\,\Theta_{21} = \Theta_{12} = nm\pi^{2} \chi \left( {Q_{12} + Q_{33} } \right), \\ \Theta_{31} & = \Theta_{13} = m\pi Q_{44} ,\;\Theta_{32} = \Theta_{23} = n\pi \chi Q_{55} ,\;\Xi_{11} = \Xi_{22} = 1 + \gamma^{2} \left[ {\left( {m\pi } \right)^{2} + \left( {n\pi } \right)^{2} \chi^{2} } \right], \\ \Xi_{33} & = \bar{I}\Xi_{11} = \bar{I}\left\{ {1 + \gamma^{2} \left[ {\left( {m\pi } \right)^{2} + \left( {n\pi } \right)^{2} \chi^{2} } \right]} \right\} \\ \end{aligned}$$
(51a{-}h)

in which \(\bar{\Omega }\) is defined by \(\bar{\Omega } = {{\Omega^{2} } \mathord{\left/ {\vphantom {{\Omega^{2} } {\left( {1 + ig^{ * } \Omega } \right)}}} \right. \kern-0pt} {\left( {1 + ig^{ * } \Omega } \right)}}.\) The non-dimensional eigenfrequency \((\varpi = i\Omega )\) can be written as

$$\varpi = - \frac{{g^{ * } \bar{\Omega }}}{2} \pm i\sqrt {\bar{\Omega } - \left( {\frac{{g^{ * } \bar{\Omega }}}{2}} \right)^{2} } = - \omega_{n} \left( {\zeta \pm i\sqrt {1 - \zeta^{2} } } \right)$$
(52)

The dimensionless frequency of undamped vibration \((\omega_{n} )\) and the damping ratio \((\zeta )\) are expressed as

$$\omega_{n} = \sqrt {\bar{\Omega }} , \quad \zeta = \frac{1}{2}g^{ * } \sqrt {\bar{\Omega }}$$
(53a, b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadsalehi, M., Zargar, O. & Baghani, M. Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory. Meccanica 52, 1063–1077 (2017). https://doi.org/10.1007/s11012-016-0432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0432-0

Keywords

Navigation