Skip to main content
Log in

Aerothermoelastic analysis of lattice sandwich composite panels in supersonic airflow

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper is devoted to investigate the aerothermoelastic properties of the composite sandwich panels with two- and three-dimensional lattice cores in supersonic airflow. Both the top and bottom face sheets of the sandwich panels are composite laminated panels. The two- and three-dimensional lattice cores are composed of triangular grids and pyramidal trusses, respectively. The first-order shear deformation theory is used in the structural modeling. The equivalent thermal expansion coefficients of the triangular grid are obtained by the physical and geometric relations of the deformed core only under the temperature change. The equation of motion of the structural system is formulated using the Hamilton’s principle. The supersonic piston theory is used to evaluate the aerodynamic pressure. The aerothermoelastic properties of the lattice sandwich panels are analyzed by the frequency-domain method. The influences of parameters of the lattice core on the aeroelastic stability of the sandwich panel are investigated. The aerothermoelastic properties of the sandwich composite panels with two- and three-dimensional lattice cores are compared. Some useful results are obtained from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xue ZY, Hutchinson JW (2003) Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 45:685–705

    Article  MATH  Google Scholar 

  2. Lu TJ (1999) Heat transfer efficiency of metal honeycombs. Int J Heat Mass Transf 42:2031–2040

    Article  MATH  Google Scholar 

  3. Hoffmann F, Lu TJ, Hodson HP (2003) Heat transfer performance of Kagome structures, Paper HX07, 8th UK national heat transfer conference, Oxford, 9–10 September 2003

  4. Kim T (2003) Fluid-flow and heat-transfer in a lattice-frame material. PhD Thesis, Department of Engineering, University of Cambridge

  5. ElRaheb M, Wagner P (1997) Transmission of sound across a truss-like periodic panel: 2D analysis. J Acoust Soc Am 102(4):2176–2183

    Article  ADS  Google Scholar 

  6. Cui XD, Zhao LM, Wang ZH, Zhao H, Fang DN (2012) Dynamic response of metallic lattice sandwich structures to impulsive loading. Int J Impact Eng 43:1–5

    Article  Google Scholar 

  7. Ruzzene M (2004) Vibration and sound radiation of sandwich beams with honeycomb truss core. J Sound Vib 277:741–763

    Article  ADS  Google Scholar 

  8. Cielecka I, Jedrysiak J (2006) A non-asymptotic model of dynamics of honeycomb lattice-type plates. J Sound Vib 296:130–149

    Article  ADS  Google Scholar 

  9. Dharmasena KP, Wadley HNG, Williams K, Xue ZY, Hutchinson JW (2011) Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air. Int J Impact Eng 38:275–289

    Article  Google Scholar 

  10. McShane GJ, Deshpande VS, Fleck NA (2010) Underwater blast response of free-standing sandwich plates with metallic lattice cores. Int J Impact Eng 37:1138–1149

    Article  Google Scholar 

  11. Lok TS, Cheng QH (2001) Free and forced vibration of simply supported orthotropic sandwich panel. Comput Struct 79:301–312

    Article  Google Scholar 

  12. Lou J, Ma L, Wu LZ (2012) Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater Sci Eng, B 177:1712–1716

    Article  Google Scholar 

  13. Chattopadhyay A, Kim JS, Liu Q (2002) Aeromechanical stability analysis and control of smart composite rotor blades. J Vib Control 8:847–860

    Article  Google Scholar 

  14. Ghoman SS, Azzouz MS (2012) Supersonic aerothermoelastic nonlinear flutter study of curved panels: time domain. J Aircraft 49(4):1179–1183

    Google Scholar 

  15. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G (2007) Suppressing aeroelastic instability using broadband passive targeted energy transfers, part I: theory. AIAA J 45:693–711

    Article  ADS  Google Scholar 

  16. Kuo SY (2011) Flutter of rectangular composite plates with variable fiber pacing. Compos Struct 93:2533–2540

    Article  Google Scholar 

  17. Dowell EH (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275

    Article  Google Scholar 

  18. Dowell EH (1967) Nonlinear oscillations of a fluttering plate II. AIAA J 5(10):1856–1862

    Article  ADS  Google Scholar 

  19. Attar P, Tang D, Dowell EH (2010) Nonlinear aeroelastic study for folding wing structures. AIAA J 48(10):2187–2195

    Article  ADS  Google Scholar 

  20. Han AD, Yang TY (1983) Nonlinear panel flutter using high-order triangular finite elements. AIAA J 21(10):1453–1460

    Article  ADS  MATH  Google Scholar 

  21. Shin WH, Oh IK, Lee I (2009) Nonlinear flutter of aerothermally buckled composite shells with damping treatments. J Sound Vib 324:556–569

    Article  ADS  Google Scholar 

  22. Oh IK, Lee I (2006) Supersonic flutter suppression of piezolaminated cylindrical panels based on multifield layerwise theory. J Sound Vib 291:1186–1201

    Article  ADS  Google Scholar 

  23. Song ZG, Li FM (2012) Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate. Compos Struct 94:702–713

    Article  Google Scholar 

  24. Song ZG, Li FM (2014) Aerothermoelastic analysis of nonlinear composite laminated panel with aerodynamic heating in hypersonic flow. Compos B 56:830–839

    Article  Google Scholar 

  25. Li FM, Song ZG (2013) Flutter and thermal buckling control for composite laminated panels in supersonic flow. J Sound Vib 332(22):5678–5695

    Article  ADS  Google Scholar 

  26. Song ZG, Li FM (2014) Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels. J Vib Control 20(14):2118–2132

    Article  Google Scholar 

  27. Song ZG, Li FM (2014) Investigations on the flutter properties of supersonic panels with different boundary conditions. Int J Dyn Control 2:346–353

    Article  Google Scholar 

  28. Song ZG, Li FM (2014) Aeroelastic analysis and active flutter control of nonlinear lattice sandwich beams. Nonlinear Dyn 76(1):57–68

    Article  MathSciNet  MATH  Google Scholar 

  29. Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, Oxford

    Google Scholar 

  30. Jones RM (1975) Mechanics of composite materials. Taylor & Francis, London

    Google Scholar 

  31. Queheillalt DT, Murty Y, Wadley HNG (2008) Mechanical properties of an extruded pyramidal lattice truss sandwich structure. Scripta Mater 58:76–79

    Article  Google Scholar 

  32. Wang HX, Chung SW (2011) Equivalent elastic constants of truss core sandwich plates. J Press Vessel Technol 133:041203

    Article  Google Scholar 

  33. Guo XY, Mei C (2006) Application of aeroelastic modes on nonlinear supersonic panel flutter at elevated temperatures. Comput Struct 84:1619–1628

    Article  Google Scholar 

  34. Xue DY, Mei C (1993) Finite element non-linear panel-flutter with arbitrary temperature in supersonic flow. AIAA J 31:154–162

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (No. 2011CB711100) and the National Natural Science Foundation of China (Nos. 10672017, 11172084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Ming Li.

Appendix

Appendix

The matrices in Eq. (25) are written as

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{pp} } & 0 & 0 & 0 & 0 \\ 0 & {{\mathbf{M}}_{rr} } & 0 & 0 & 0 \\ 0 & 0 & {{\mathbf{M}}_{gg} } & 0 & {{\mathbf{M}}_{gq} } \\ 0 & 0 & 0 & {{\mathbf{M}}_{ff} } & {{\mathbf{M}}_{fq} } \\ 0 & 0 & {{\mathbf{M}}_{qg} } & {{\mathbf{M}}_{qf} } & {{\mathbf{M}}_{qq} } \\ \end{array} } \right], $$
(28)

where

$$ {\mathbf{M}}_{pp} = \left( {\rho_{f} h_{f} + \frac{{\rho_{c} h_{c} }}{2}} \right)\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upxi \upxi }}^{\text{T}} {\text{d}}x{\text{d}}y} } , $$
(29)
$$ {\mathbf{M}}_{rr} = \left( {\rho_{f} h_{f} + \frac{{\rho_{c} h_{c} }}{2}} \right)\int_{0}^{a} {\int_{0}^{b} {{\mathbf{\varsigma \varsigma }}^{\text{T}} {\text{d}}x{\text{d}}y} } , $$
(30)
$$ {\mathbf{M}}_{gg} = \left( {\frac{{\rho_{f} h_{f} h_{c}^{2} }}{4} + \frac{{\rho_{c} h_{c}^{3} }}{24}} \right)\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upchi \upchi }}^{\text{T}} {\text{d}}x{\text{d}}y} }, {\mathbf{M}}_{gq} = \frac{{\rho_{f} h_{c} h_{f}^{2} }}{2}\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upchi}}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } , $$
(31)
$$ {\mathbf{M}}_{ff} = \left( {\frac{{\rho_{f} h_{f} h_{c}^{2} }}{4} + \frac{{\rho_{c} h_{c}^{3} }}{24}} \right)\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upeta \upeta }}^{\text{T}} {\text{d}}x{\text{d}}y} } ,{\mathbf{M}}_{gq} = \frac{{\rho_{f} h_{c} h_{f}^{2} }}{2}\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upeta}}\frac{{\partial {\varvec{\upzeta}}}}{\partial y}^{\text{T}} {\text{d}}x{\text{d}}y} } , $$
(32)
$$ {\mathbf{M}}_{qq} = \left( {\rho_{f} h_{f} + \frac{{\rho_{c} h_{c} }}{2}} \right)\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upzeta \upzeta }}^{\text{T}} {\text{d}}x{\text{d}}y} } + \frac{{\rho_{f} h_{f}^{3} }}{3}\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\varvec{\upzeta}}}}{\partial x}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x} + \frac{{\partial {\varvec{\upzeta}}}}{\partial y}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial y}} \right){\text{d}}x{\text{d}}y} } , $$
(33)
$$ {\mathbf{M}}_{qg} = {\mathbf{M}}_{gq}^{\text{T}} ,{\mathbf{M}}_{qf} = {\mathbf{M}}_{fq}^{\text{T}} . $$
(34)
$$ {\mathbf{C}}_{\Delta p} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{\mathbf{C}}_{qq} } \\ \end{array} } \right], $$
(35)

where

$$ {\mathbf{C}}_{qq} = \frac{{\gamma p_{\infty } M_{\infty }^{2} }}{{\sqrt {M_{\infty }^{2} - 1} }}\frac{{M_{\infty }^{2} - 2}}{{M_{\infty }^{2} - 1}}\frac{1}{{U_{\infty } }}\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upzeta \upzeta }}^{\text{T}} {\text{d}}x{\text{d}}y} } . $$
(36)
$$ {\mathbf{K}}_{\Delta p} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{\mathbf{K}}_{\Delta p}^{qq} } \\ \end{array} } \right], $$
(37)

where

$$ {\mathbf{K}}_{\Delta p}^{qq} = \frac{{\gamma p_{\infty } M_{\infty }^{2} }}{{\sqrt {M_{\infty }^{2} - 1} }}\int_{0}^{a} {\int_{0}^{b} {{\varvec{\upzeta}}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } . $$
(38)
$$ {\mathbf{K}} = \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{pp} } & {{\mathbf{K}}_{pr} } & {{\mathbf{K}}_{pg} } & {{\mathbf{K}}_{pf} } & {{\mathbf{K}}_{pq} } \\ {{\mathbf{K}}_{rp} } & {{\mathbf{K}}_{rr} } & {{\mathbf{K}}_{rg} } & {{\mathbf{K}}_{rf} } & {{\mathbf{K}}_{rq} } \\ {{\mathbf{K}}_{gp} } & {{\mathbf{K}}_{gr} } & {{\mathbf{K}}_{gg} } & {{\mathbf{K}}_{gf} } & {{\mathbf{K}}_{gq} } \\ {{\mathbf{K}}_{fp} } & {{\mathbf{K}}_{fr} } & {{\mathbf{K}}_{fg} } & {{\mathbf{K}}_{ff} } & {{\mathbf{K}}_{fq} } \\ {{\mathbf{K}}_{qp} } & {{\mathbf{K}}_{qr} } & {{\mathbf{K}}_{qg} } & {{\mathbf{K}}_{qf} } & {{\mathbf{K}}_{qq} } \\ \end{array} } \right], $$
(39)

where

$$ \begin{aligned} K_{pp} & = (h_{c} Q_{c11} + A_{t11} + A_{b11} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial \xi^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad+ (h_{c} Q_{c66} + A_{t66} + A_{b66} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial \xi^{T} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + (A_{t16} + A_{b16} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{\partial \xi }{\partial x}\frac{{\partial \xi^{T} }}{\partial y} + \frac{\partial \xi }{\partial y}\frac{{\partial \xi^{T} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ \end{aligned} $$
(40)
$$ \begin{aligned} K_{pr} & = (A_{t16} + A_{b16} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial \varsigma^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + (h_{c} Q_{c12} + A_{t12} + A_{b12} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial \varsigma^{T} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + (A_{t26} + A_{b26} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial \varsigma^{T} }}{\partial y}{\text{d}}x{\text{d}}y} }\\ & \quad + (h_{c} Q_{c66} + A_{t66} + A_{b66} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial \varsigma^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(41)
$$ \begin{aligned} K_{pg} & = \frac{{h_{c} }}{2}(A_{b11} - A_{t11} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial {\varvec{\upchi}}^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}(A_{b16} - A_{t16} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{\partial \xi }{\partial x}\frac{{\partial {\varvec{\upchi}}^{T} }}{\partial y} + \frac{\partial \xi }{\partial y}\frac{{\partial {\varvec{\upchi}}^{T} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}(A_{b66} - A_{t66} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial {\varvec{\upchi}}^{T} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(42)
$$ \begin{aligned} K_{pf} & = \frac{{h_{c} }}{2}(A_{b16} - A_{t16} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial {\varvec{\upeta}}^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ &\quad + \frac{{h_{c} }}{2}(A_{b12} - A_{t12} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial {\varvec{\upeta}}^{T} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ &\quad + \frac{{h_{c} }}{2}(A_{b66} - A_{t66} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial {\varvec{\upeta}}^{T} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}(A_{b26} - A_{t26} )\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial {\varvec{\upeta}}^{T} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(43)
$$ \begin{aligned} {\mathbf{K}}_{pq} & = \left[ {\frac{{h_{c} (A_{t11} - A_{b11} )}}{2} - B_{b11} - B_{t11} } \right]\\ &\quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial^{2} \zeta^{T} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t26} - A_{b26} )}}{2} - B_{b26} - B_{t26} } \right] \\ &\quad \times\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial^{2} \zeta^{T} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t12} - A_{b12} )}}{2} - B_{b12} - B_{t12} } \right] \\ &\quad \times\int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial^{2} \zeta^{T} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t16} - A_{b16} )}}{2} - B_{b16} - B_{t16} } \right] \\ &\quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial^{2} \zeta^{T} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + [h_{c} (A_{t66} - A_{b66} ) - 2(B_{b66} + B_{t66} )] \\ &\quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial y}\frac{{\partial^{2} \zeta^{T} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + [h_{c} (A_{t16} - A_{b16} ) - 2(B_{b16} + B_{t16} )] \\ &\quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{\partial \xi }{\partial x}\frac{{\partial^{2} \zeta^{T} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(44)
$$ \begin{aligned} {\mathbf{K}}_{rr} & = (h_{c} Q_{c66} + A_{t66} + A_{b66} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\mathbf{\varsigma }}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad+ (A_{t26} + A_{b26} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\varvec{\upxi}}}}{\partial x}\frac{{\partial {\varvec{\upxi}}^{\text{T}} }}{\partial y} + \frac{{\partial {\varvec{\upxi}}}}{\partial y}\frac{{\partial {\varvec{\upxi}}^{\text{T}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + (h_{c} Q_{c22} + A_{t22} + A_{b22} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upxi}}}}{\partial y}\frac{{\partial {\varvec{\upxi}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(45)
$$ \begin{aligned} {\mathbf{K}}_{rg} & = \frac{{h_{c} }}{2}(A_{b16} - A_{t16} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y}} \\ & \quad + \frac{{h_{c} }}{2}(A_{b66} - A_{t66} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}(A_{b12} - A_{t12} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y}} \\ & \quad + \frac{{h_{c} }}{2}(A_{b26} - A_{t26} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(46)
$$ \begin{aligned} {\mathbf{K}}_{rf} & = \frac{{h_{c} }}{2}(A_{b66} - A_{t66} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ &\quad + \frac{{h_{c} }}{2}(A_{b26} - A_{t26} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y} + \frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}(A_{b22} - A_{t22} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(47)
$$ \begin{aligned} {\mathbf{K}}_{rq} & = \left[ {\frac{{h_{c} (A_{t16} - A_{b16} )}}{2} - B_{b16} - B_{t16} } \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t22} - A_{b22} )}}{2} - B_{b22} - B_{t22} } \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t26} - A_{b26} )}}{2} - B_{b26} - B_{t26} } \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {\frac{{h_{c} (A_{t12} - A_{b12} )}}{2} - B_{b12} - B_{t12} } \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + [h_{c} (A_{t26} - A_{b26} ) - 2(B_{b26} + B_{t26} )] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + [h_{c} (A_{t66} - A_{b66} ) - 2(B_{b66} + B_{t66} )] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\mathbf{\varsigma }}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(48)
$$ \begin{aligned} {\mathbf{K}}_{gg} & = h_{c} Q_{c55} \int_{0}^{a} {\int_{0}^{b} {{\varvec{\upchi \upchi }}^{\text{T}} {\text{d}}x{\text{d}}y} }\\ & \quad + \frac{{h_{c}^{2} }}{4}\left( {A_{b11} + A_{t11} + \frac{{h_{c} Q_{c11} }}{3}} \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}(A_{b16} + A_{t16} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial y} + \frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}\left( {A_{b66} + A_{t66} + \frac{{h_{c} Q_{c66} }}{3}} \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial {\varvec{\upchi}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(49)
$$ \begin{aligned} {\mathbf{K}}_{gf} & = \frac{{h_{c}^{2} }}{4}(A_{b16} + A_{t16} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} }\\ & \quad + \frac{{h_{c}^{2} }}{4}\left( {A_{b12} + A_{t12} + \frac{{h_{c} Q_{c12} }}{3}} \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}(A_{b26} + A_{t26} )\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} }\\ & \quad + \frac{{h_{c}^{2} }}{4}\left( {A_{b66} + A_{t66} + \frac{{h_{c} Q_{c66} }}{3}} \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(50)
$$ \begin{aligned} {\mathbf{K}}_{gq} & = - h_{c} Q_{c55} \int_{0}^{a} {\int_{0}^{b} {{\varvec{\upchi}}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t11} - B_{b11} - \frac{{h_{c} (A_{t11} + A_{b11} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + h_{c} \left[ {B_{t16} - B_{b16} - \frac{{h_{c} (A_{t16} + A_{b16} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t12} - B_{b12} - \frac{{h_{c} (A_{t12} + A_{b12} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t16} - B_{b16} - \frac{{h_{c} (A_{t16} + A_{b16} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + h_{c} \left[ {B_{t66} - B_{b66} - \frac{{h_{c} (A_{t66} + A_{b66} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t26} - B_{b26} - \frac{{h_{c} (A_{t26} + A_{b26} )}}{2}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upchi}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(51)
$$ \begin{aligned} {\mathbf{K}}_{ff} & = h_{c} Q_{c44} \int_{0}^{a} {\int_{0}^{b} {{\varvec{\upeta \upeta }}^{\text{T}} {\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}\left[ {A_{b66} + A_{t66} - \frac{{h_{c} Q_{c66} }}{3}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}(A_{b26} + A_{t26} )\int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\varvec{\upeta}}}}{\partial x}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y} + \frac{{\partial {\varvec{\upeta}}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c}^{2} }}{4}\left( {A_{b22} + A_{t22} + \frac{{h_{c} Q_{c22} }}{3}} \right)\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial y}\frac{{\partial {\varvec{\upeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(52)
$$ \begin{aligned} {\mathbf{K}}_{fq} & = - h_{c} Q_{c44} \int_{0}^{a} {\int_{0}^{b} {{\varvec{\upeta}}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t16} - B_{b16} - \frac{{h_{c} (A_{t16} + A_{b16} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + h_{c} \left[ {B_{t66} - B_{b66} - \frac{{h_{c} (A_{t66} + A_{b66} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t26} - B_{b26} - \frac{{h_{c} (A_{t26} + A_{b26} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial x}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t12} - B_{b12} - \frac{{h_{c} (A_{t12} + A_{b12} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + h_{c} \left[ {B_{t26} - B_{b26} - \frac{{h_{c} (A_{t26} + A_{b26} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \frac{{h_{c} }}{2}\left[ {B_{t22} - B_{b22} - \frac{{h_{c} (A_{t22} + A_{b22} )}}{2}} \right]\int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upeta}}}}{\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(53)
$$ \begin{aligned} {\mathbf{K}}_{qq} & = h_{c} Q_{c55} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upzeta}}}}{\partial x}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad + h_{c} Q_{c44} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upzeta}}}}{\partial y}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {D_{t11} + D_{b11} + h_{c} (B_{b11} - B_{t11} ) + \frac{{h_{c}^{2} (A_{t11} + A_{b11} )}}{4}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {\varvec{\upzeta}}}}{{\partial x^{2} }}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {D_{t22} + D_{b22} + h_{c} (B_{b22} - B_{t22} ) + \frac{{h_{c}^{2} (A_{t22} + A_{b22} )}}{4}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {\varvec{\upzeta}}}}{{\partial y^{2} }}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + \left[ {D_{t12} + D_{b12} + h_{c} (B_{b12} - B_{t12} ) + \frac{{h_{c}^{2} (A_{t12} + A_{b12} )}}{4}} \right]\\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {\varvec{\upzeta}}}}{{\partial x^{2} }}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }}{\text{d}}x{\text{d}}y} } \\ & \quad + 4\left[ {D_{t66} + D_{b66} + h_{c} (B_{b66} - B_{t66} ) + \frac{{h_{c}^{2} (A_{t66} + A_{b66} )}}{4}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial^{2} {\varvec{\upzeta}}}}{\partial x\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad + 2\left[ {D_{t16} + D_{b16} + h_{c} (B_{b16} - B_{t16} ) + \frac{{h_{c}^{2} (A_{t16} + A_{b16})}}{4}} \right] \\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {\varvec{\upzeta}}}}{{\partial x^{2} }}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y} + \frac{{\partial^{2} {\varvec{\upzeta}}}}{\partial x\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial x^{2} }}} \right){\text{d}}x{\text{d}}y} } \\ & \quad + 2\left[ {D_{t26} + D_{b26} + h_{c} (B_{b26} - B_{t26} ) + \frac{{h_{c}^{2} (A_{t26} + A_{b26} )}}{4}} \right]\\ & \quad \times \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial^{2} {\varvec{\upzeta}}}}{\partial x\partial y}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{{\partial y^{2} }} + \frac{{\partial^{2} {\varvec{\upzeta}}}}{{\partial y^{2} }}\frac{{\partial^{2} {\varvec{\upzeta}}^{\text{T}} }}{\partial x\partial y}} \right){\text{d}}x{\text{d}}y} } , \\ \end{aligned} $$
(54)
$$ \begin{aligned} {\mathbf{K}}_{rp} = {\mathbf{K}}_{pr}^{\text{T}} ,\quad {\mathbf{K}}_{gp} = {\mathbf{K}}_{pg}^{\text{T}} ,\quad {\mathbf{K}}_{fp} = {\mathbf{K}}_{pf}^{\text{T}} ,\quad {\mathbf{K}}_{qp} = {\mathbf{K}}_{pq}^{\text{T}} ,\quad {\mathbf{K}}_{gr} = {\mathbf{K}}_{rg}^{\text{T}} \hfill \\ {\mathbf{K}}_{fr} = {\mathbf{K}}_{rf}^{\text{T}} ,\quad {\mathbf{K}}_{qr} = {\mathbf{K}}_{rq}^{\text{T}} ,\quad {\mathbf{K}}_{fg} = {\mathbf{K}}_{gf}^{\text{T}} ,\quad {\mathbf{K}}_{qg} = {\mathbf{K}}_{gq}^{\text{T}} ,\quad {\mathbf{K}}_{qf} = {\mathbf{K}}_{fq}^{\text{T}} , \hfill \\ \end{aligned} $$
(55)
$$ {\mathbf{K}}_{\Delta T} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {{\mathbf{K}}_{\Delta T}^{qq} } \\ \end{array} } \right], $$
(56)

where

$$ \begin{aligned} {\mathbf{K}}_{\Delta T}^{qq} & = - F_{Tx} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upzeta}}}}{\partial x}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}{\text{d}}x{\text{d}}y} } \\ & \quad- F_{Tx} \int_{0}^{a} {\int_{0}^{b} {\frac{{\partial {\varvec{\upzeta}}}}{\partial y}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial y}{\text{d}}x{\text{d}}y} } \\ & \quad - F_{Txy} \int_{0}^{a} {\int_{0}^{b} {\left( {\frac{{\partial {\varvec{\upzeta}}}}{\partial x}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial y} + \frac{{\partial {\varvec{\upzeta}}}}{\partial y}\frac{{\partial {\varvec{\upzeta}}^{\text{T}} }}{\partial x}} \right){\text{d}}x{\text{d}}y} } . \\ \end{aligned} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, ZG., Li, FM. Aerothermoelastic analysis of lattice sandwich composite panels in supersonic airflow. Meccanica 51, 877–891 (2016). https://doi.org/10.1007/s11012-015-0240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0240-y

Keywords

Navigation