Skip to main content
Log in

Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Eringen’s nonlocal parameter is estimated for single-walled carbon nanotubes (SWCNTs) with arbitrary chirality. Analytical solution is presented by using molecular mechanics and nonlocal elasticity theory. The model is used to elucidate the effect of tube chirality, tube diameter, aspect ratio of the nanotube (length/diameter) and wave propagation mode shapes on the magnitude of the nonlocal parameter. The results show that, instead of a constant value for the nonlocal parameter reported in literature, the values of the nonlocal parameter vary with respect to different geometrical parameters of the SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rafii-Tabar H (2008) Computational physics of carbon nanotubes. Cambridge University Press, Cambridge

    Google Scholar 

  2. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034

    Article  Google Scholar 

  3. Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80:195412

    Article  ADS  Google Scholar 

  4. Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur J Mech A-Solid 29:49–55

    Article  MathSciNet  Google Scholar 

  5. Cinefra M, Carrera E, Brischetto S (2011) Refined shell models for the vibration analysis of multiwalled carbon nanotubes. Mech Adv Mater Struct 18(7):476–483

    Article  Google Scholar 

  6. Yan JW, Liew KM, He LH (2012) Predicting mechanical properties of single-walled carbon nanocones using a higher-order gradient continuum computational framework. Compos Struct 94:3271–3277

    Article  Google Scholar 

  7. Pradhan SC, Mandal U (2013) Analysis of radial nonlocal effect on the structural response of carbon nanotubes. Phys Lett A 377:2154–2163

    Article  ADS  MathSciNet  Google Scholar 

  8. Brischetto S (2014) A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes. Compos Part B-Eng 61:222–228

    Article  Google Scholar 

  9. Civalek Ö, Akgöz B (2009) Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen’s nonlocal elasticity theory. Int J Eng Appl Sci 1(2):47–56

    Google Scholar 

  10. Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Comput Mater Sci 48:736–742

    Article  Google Scholar 

  11. Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16:178–190

    Article  ADS  Google Scholar 

  12. Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

    Article  ADS  MATH  Google Scholar 

  13. Murmu T, Mc Carthy MA, Adhikari S (2012) Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J Sound Vib 331:5069–5086

    Article  ADS  Google Scholar 

  14. Fazelzadeh SA, Ghavanloo E (2012) Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos Struct 94:1016–1022

    Article  Google Scholar 

  15. Kazemi-Lari MA, Ghavanloo E, Fazelzadeh SA (2013) Structural instability of carbon nanotubes embedded in viscoelastic medium and subjected to distributed tangential load. J Mech Sci Technol 27(7):2085–2091

    Article  Google Scholar 

  16. Carta G, Brun M (2012) A dispersive homogenization model based on lattice approximation for the prediction of wave motion in laminates. J Appl Mech 79:021019

    Article  Google Scholar 

  17. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  ADS  Google Scholar 

  18. Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 94:7281–7287

    Article  ADS  Google Scholar 

  19. Wang LF, Hu HY (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412

    Article  ADS  Google Scholar 

  20. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of doublewalled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404

    Article  ADS  Google Scholar 

  21. Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69:235406

    Article  ADS  Google Scholar 

  22. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  ADS  Google Scholar 

  23. Zhang YY, Tan VBC, Wang CM (2006) Effect of chirality on buckling behavior of single-walled carbon nanotubes. J Appl Phys 100:074304

    Article  ADS  Google Scholar 

  24. Xie GQ, Han X, Liu GR, Long SY (2006) Effect of small size-scale on the radial buckling pressure of a simply supported multiwalled carbon nanotube. Smart Mater Struct 15:1143–1149

    Article  ADS  Google Scholar 

  25. Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305

    Article  ADS  Google Scholar 

  26. Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707

    Article  ADS  Google Scholar 

  27. Ansari R, Rouhi H, Sahmani S (2011) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53:786–792

    Article  Google Scholar 

  28. Narendar S, Mahapatra DR, Gopalakrishnan S (2011) Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int J Eng Sci 49:509–522

    Article  MATH  Google Scholar 

  29. dos Santos JVA, Mota Soares CM (2012) Nonlocal material properties of single-walled carbon nanotubes. Int J Smart Nano Mater 3(2):141–151

    Article  Google Scholar 

  30. Liang YJ, Han Q (2012) Prediction of nonlocal scale parameter for carbon nanotubes. Sci China Phys Mech 55(9):1670–1678

    Article  MathSciNet  Google Scholar 

  31. Duan WH, Challamel N, Wang CM, Ding Z (2013) Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J Appl Phys 114:104312

    Article  ADS  Google Scholar 

  32. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    Article  Google Scholar 

  33. White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphatic tubules. Phys Rev B 47:5485–5488

    Article  ADS  Google Scholar 

  34. Povstenko YZ (1999) The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J Math Sci 97:3840–3845

    Article  Google Scholar 

  35. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  36. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, New York

    Google Scholar 

  37. Chang T, Gao H (2003) Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

    Article  ADS  MATH  Google Scholar 

  38. Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58:1422–1433

    Article  ADS  MathSciNet  Google Scholar 

  39. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  40. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instability beyond linear response. Phys Rev Lett 76:2511–2514

    Article  ADS  Google Scholar 

  41. Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P (1999) Ab-initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59:12678

    Article  ADS  Google Scholar 

  42. Wang CY, Zhang J, Fei YQ, Murmu T (2012) Circumferential nonlocal effect on vibrating nanotubules. Int J Mech Sci 58:86–90

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavanloo, E., Fazelzadeh, S.A. Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality. Meccanica 51, 41–54 (2016). https://doi.org/10.1007/s11012-015-0195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0195-z

Keywords

Navigation