Skip to main content
Log in

MHD oblique stagnation-point flow towards a stretching/shrinking surface

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The steady MHD oblique stagnation-point flow towards a stretching/shrinking surface in a viscous and electrically conducting fluid and in the presence of a uniform magnetic field is studied. The external magnetic field is parallel to the dividing streamline of the oblique stagnation-pint flow. The governing Navier–Stokes equations are reduced to a system of two ordinary differential equations. Solutions of these equations are evaluated numerically for various values of the governing parameters, namely the magnetic parameter M, the stretching/shrinking parameter \(\lambda \) and the two constants \(\alpha \) and \(\beta \) arising in the model. It is found that dual (upper and lower branch) solutions exist and that there is a critical value \(\lambda _c\) of \(\lambda \), dependent on M, with solutions only in \(\lambda \ge \lambda _c\) with the lower solution branch terminating as \(\lambda \rightarrow -(1+M)\). It is shown that the values of \(\lambda _c\) increase as M is increased thus extending the range of similarity solutions in the opposing flow regime. It is also found that the stagnation line is displaced due to the effect of MHD with a region of reversed flow being observed near to the wall for a shrinking surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J 326:321–324

    Google Scholar 

  2. Homann F (1936) Die Einfluss grsse Zähigkeit bei der Strmung um der Zylinder und um die Kugel. J Appl Math Mech (ZAMM) 16:153–164

    Article  MATH  Google Scholar 

  3. Wang CY (1985) The unsteady oblique stagnation point flow. Phys Fluids 28:2046–2049

    Article  MATH  ADS  Google Scholar 

  4. Stuart JT (1959) The viscous flow near a stagnation point when the external flow has uniform vorticity. J Aerosp Sci 26:124–125

    Article  MATH  Google Scholar 

  5. Tamada K (1979) Two-dimensional stagnation-point flow impinging obliquely on a plane wall. J Phys Soc Jpn 46:310–311

    Article  ADS  Google Scholar 

  6. Takemitsu N, Matunobu Y (1979) Unsteady stagnation-point flow impinging obliquely on an oscillating flat plate. J Phys Soc Jpn 47:1347–1353

    Article  MathSciNet  ADS  Google Scholar 

  7. Liu T (1992) Nonorthogonal stagnation flow on the surface of a quiescent fluid-an exact solution of the Navier–Stokes equation. Q Appl Math 50:39–47

    MATH  Google Scholar 

  8. Dorrepaal JM (1986) An exact solution of the Navier–Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions. J Fluid Mech 163:141–147

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Dorrepaal JM (2000) Is two-dimensional oblique stagnation point flow unique? Can Appl Math Q 8:61–66

    Article  MATH  MathSciNet  Google Scholar 

  10. Labropulu F, Dorrepaal JM, Chandna OP (1996) Oblique flow impinging on a wall with suction or blowing. Acta Mech 115:15–25

    Article  MATH  Google Scholar 

  11. Blyth MG, Pozrikidis C (2005) Stagnation-point flow against a liquid film on a plane wall. Acta Mech 180:203–219

    Article  MATH  Google Scholar 

  12. Tooke RM, Blyth MG (2008) A note on oblique stagnation-point flow. Phys Fluids 20:033101

    Article  ADS  Google Scholar 

  13. Reza M, Gupta AS (2005) Steady two-dimensional oblique stagnation-point flow towards a stretching surface. Fluid Dyn Res 27:334–340

    Article  MathSciNet  ADS  Google Scholar 

  14. Lok YY, Pop I, Chamkha AJ (2007) Non-orthogonal stagnation-point flow of a micropolar fluid. Int J Eng Sci 45:173–184

    Article  MATH  MathSciNet  Google Scholar 

  15. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation-point flow towards a stretching surface. Heat Mass Transf 38:517–521

    Article  ADS  Google Scholar 

  16. Mahapatra TR, Dholey S, Gupta AS (2007) Heat transfer in oblique stagnation point flow of an incompressible viscous fluid towards a stretching surface. Heat Mass Transf 43:767–773

    Article  ADS  Google Scholar 

  17. Weidman PD, Putkaradze V (2003) Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur J Mech B Fluids 22:123–131

    Article  Google Scholar 

  18. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  20. Drazin P, Riley N (2006) The Navier–Stokes equations: a classification of flows and exact solutions. London Mathematical Society Lecture Note Series, vol 334. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Lok YY, Pop I, Ingham DB (2010) Oblique stagnation slip flow of a micropolar fluid. Meccanica 45:187–198

    Article  MATH  MathSciNet  Google Scholar 

  22. Nadeem S, Mehmood R, Akbar NS (2014) Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. Int J Therm Sci 78:90–100

    Article  Google Scholar 

  23. Grosan T, Pop I, Revnic C, Ingham DB (2009) Magnetohydrodynamic oblique stagnation-point flow. Meccanica 44:565–572

    Article  MATH  MathSciNet  Google Scholar 

  24. Borrelli A, Giantesio G, Patria MC (2012) MHD oblique stagnation-point flow of a Newtonian fluid. J Appl Math Phys (ZAMP) 63:271–294

    Article  MATH  MathSciNet  Google Scholar 

  25. Sajid M, Javed T, Hayat T (2008) MHD rotating flow of a viscous fluid over a shrinking surface. J Nonlinear Dyn 51:259–265

    Article  MATH  Google Scholar 

  26. Hayat T, Javed T, Sajid M (2008) Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface. Phys Lett A 372:3264–3273

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Fang T, Zhang J (2009) Closed-form exact solution of MHD viscous flow over a shrinking sheet. Commun Nonlinear Sci Numer Simul 14:2853–2857

    Article  MATH  ADS  Google Scholar 

  28. Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397

    Article  Google Scholar 

  29. Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys 87:1121–1124

    Article  ADS  Google Scholar 

  30. Akbar NS, Khan ZH, Haq RU, Nadeem S (2014) Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Appl Math Mech 35:813–820

    Article  MathSciNet  Google Scholar 

  31. Altan T, Oh S, Gegel H (1979) Metal forming fundamentals and applications. American Society of Metals, Metal Park

    Google Scholar 

  32. Fisher EG (1976) Extrusion of plastics. Wiley, New York

    Google Scholar 

  33. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  34. Sparrow EM, Abraham JP (2005) Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid. Int J Heat Mass Transf 48:3047–3056

    Article  MATH  Google Scholar 

  35. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Non-linear Mech 43:377–382

    Article  Google Scholar 

  36. Akbar NS, Khan ZH, Nadeem S (2014) The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J Mol Liq 196:21–25

    Article  Google Scholar 

  37. Slater LJ (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Merchant GJ, Davis SH (1989) Modulated stagnation-point flow and steady streaming. J Fluid Mech 198:543–555

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lok, Y.Y., Merkin, J.H. & Pop, I. MHD oblique stagnation-point flow towards a stretching/shrinking surface. Meccanica 50, 2949–2961 (2015). https://doi.org/10.1007/s11012-015-0188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0188-y

Keywords

Navigation