Skip to main content
Log in

Free vibrations of elastically embedded stocky single-walled carbon nanotubes acted upon by a longitudinally varying magnetic field

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The mechanical properties of nano-scaled composites reinforced by carbon nanotubes are enhanced by application of appropriate magnetic fields, however, little is known on the free dynamic response of the magnetically affected stocky single-walled carbon nanotubes (SWCNTs) with elastic supports. Using nonlocal Rayleigh, Timoshenko, and higher-order beam theory, the equations of free transverse vibration of elastically embedded SWCNTs subjected to a longitudinally varying magnetic field are obtained. Since finding an analytical solution to the equations of motion is a very difficult task, an efficient meshless method is proposed. The frequencies of the magnetically affected stocky SWCNTs are evaluated for different boundary conditions. The convergence checks of the proposed numerical models are carried out. In a special case, the obtained results are also compared with those of assumed mode method, and a reasonably good agreement is achieved. Subsequently, the roles of the slenderness ratio of the SWCNT, small-scale parameter, strength of the magnetic field, lateral and rotational interactions of the SWCNT with its surrounding medium on the fundamental frequency are addressed in some detail. The capabilities of the proposed models in capturing the frequencies of the magnetically affected nanostructure are also comprehensively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94:6034–6039

    Article  ADS  Google Scholar 

  2. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668

    Article  ADS  Google Scholar 

  3. Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R (2007) Properties of carbon nanotube–polymer composites aligned in a magnetic field. Carbon 45:2037–2046

    Article  Google Scholar 

  4. Hao MJ, Guo XM, Wang Q (2010) Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Euro J Mech A Solids 29:49–55

    Article  MathSciNet  ADS  Google Scholar 

  5. Fakhrabadi MMS, Amini A, Reshadi F, Khani N, Rastgoo A (2013) Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes. Comput Mater Sci 73:93–112

    Article  Google Scholar 

  6. Amara K, Tounsi A, Mechab I, Adda-Bedia EA (2010) Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field. Appl Math Model 34:3933–3942

    Article  MATH  MathSciNet  Google Scholar 

  7. Benguediab S, Tounsi A, Zidour M, Semmah A (2014) Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos Part B Eng 57:21–24

    Article  Google Scholar 

  8. Semmah A, Tounsi A, Zidour M, Heireche H, Naceri M (2015) Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory. Fullerenes Nanotubes Carbon Nanostructures 23(6):518–522

    Article  Google Scholar 

  9. Shen HS, Zhang CL (2010) Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos Struct 92:1073–1084

    Article  Google Scholar 

  10. Setoodeh AR, Khosrownejad M, Malekzadeh P (2011) Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Phys E 43:1730–1737

    Article  Google Scholar 

  11. Shen HS, Xiang Y (2013) Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos B Eng 52:311–322

    Article  Google Scholar 

  12. Wang Q, Varadan VK (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15:659

    Article  ADS  Google Scholar 

  13. Kiani K (2014) A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes. Appl Math Comput 234:557–578

    Article  MATH  MathSciNet  Google Scholar 

  14. Ansari R, Ajori S, Arash B (2012) Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study. Curr Appl Phys 12:707–711

    Article  ADS  Google Scholar 

  15. Kiani K (2013) Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int J Mech Sci 68:16–34

    Article  Google Scholar 

  16. Simsek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E 43:182–191

    Article  Google Scholar 

  17. Simsek M (2010) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mater Sci 50:2112–2123

    Article  Google Scholar 

  18. Karaoglu P, Aydogdu M (2010) On the forced vibration of carbon nanotubes via a non-local Euler–Bernoulli beam model. Proc Inst Mech Eng C 224:497–503

    Article  Google Scholar 

  19. Kiani K (2014) Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbon nanotubes. Comput Method Appl Mech Eng 276:691–723

    Article  MathSciNet  ADS  Google Scholar 

  20. Liang F, Su Y (2013) Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect. Appl Math Model 37:6821–6828

    Article  MathSciNet  ADS  Google Scholar 

  21. Wang L (2010) Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Comput Mater Sci 49:761–766

    Article  ADS  Google Scholar 

  22. Kiani K (2014) Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles. Nonlinear Dyn 76:1885–1903

    Article  MathSciNet  Google Scholar 

  23. Kiani K (2014) Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny. Compos Struct 116(2014):254–272

    Article  ADS  Google Scholar 

  24. Joshi AY, Harsha SP, Sharma SC (2010) Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Phys E 42:2115–2123

    Article  Google Scholar 

  25. Georgantzinos SK, Anifantis NK (2010) Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Phys E 42:1795–1801

    Article  Google Scholar 

  26. Kiani K (2015) Vertically aligned carbon nanotubes for sensing unidirectional fluid flow. Phys B 465:45–54

  27. Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 15:909–923

    MATH  MathSciNet  Google Scholar 

  28. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MATH  MathSciNet  Google Scholar 

  29. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  30. Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305

    Article  ADS  Google Scholar 

  31. Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E 42:2058–2064

    Article  Google Scholar 

  32. Wang H, Dong K, Men F, Yan YJ, Wang X (2010) Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl Math Model 34:878–889

    Article  MATH  MathSciNet  Google Scholar 

  33. Xie HJ, Wang X, Li Z (2012) Dynamic characteristics of multi-walled carbon nanotubes under longitudinal magnetic fields. Mech Adv Mater Struct 19:568–575

    Article  Google Scholar 

  34. Narendar S, Gupta SS, Gopalakrishnan S (2012) Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Appl Math Model 36:4529–4538

    Article  MATH  MathSciNet  Google Scholar 

  35. Kiani K (2012) Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Phys E 45:86–96

    Article  Google Scholar 

  36. Kiani K (2012) Magneto-elasto-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock. Phys Lett A 376:1679–1685

    Article  ADS  Google Scholar 

  37. Kiani K (2012) Magneto-thermo-elastic fields caused by an unsteady longitudinal magnetic field in a conducting nanowire accounting for eddy-current loss. Mater Chem Phys 136:589–598

    Article  Google Scholar 

  38. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Method Fluids 21:901–931

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Method Eng 38:1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  40. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Method Fluids 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhou JX, Zhang HY, Zhang L (2005) Reproducing kernel particle method for free and forced vibration analysis. J Sound Vib 279:389–402

    Article  ADS  Google Scholar 

  42. Kiani K, Nikkhoo A (2012) On the limitations of linear beams for the problems of moving mass-beam interaction using a meshfree method. Acta Mech Sin 28:164–179

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Aluru NR (1999) A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Comput Mech 23:324–338

    Article  MATH  Google Scholar 

  44. Kiani K, Ghaffari H, Mehri B (2013) Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr Appl Phys 13:107–120

    Article  ADS  Google Scholar 

  45. Gupta SS, Batra RC (2008) Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput Mater Sci 43:715–723

    Article  Google Scholar 

  46. Gupta SS, Bosco FG, Batra RC (2010) Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput Mater Sci 47:1049–1059

    Article  Google Scholar 

  47. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  48. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  49. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  ADS  Google Scholar 

  50. Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702

    Article  ADS  Google Scholar 

  51. Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18:105401

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Appendices

Appendix A: Exact solution to the flexural frequencies of a simply supported SWCNT acted upon by a uniform longitudinal magnetic field

In such a case, for free vibration analysis of the nanostructure, the dimensionless deformation fields of the MASWCNT based on the NRBT, NTBT, and NHOBT can be considered as follows:

$$\begin{aligned} \overline{w}^R= & {} \sum _{n=1}^{\infty }\,\overline{w}_{n0}^R\, e^{{\rm i}\varpi _n^R\tau }\sin (n\pi \xi ),\end{aligned}$$
(35a)
$$\begin{aligned} \overline{w}^T= & {} \sum _{n=1}^{\infty }\,\overline{w}_{n0}^T\, e^{{\rm i}\varpi _n^T\tau }\sin (n\pi \xi ), \\ \overline{\theta }^T= & {} \sum _{n=1}^{\infty }\,\overline{\theta }_{n0}^T\, e^{{\rm i}\varpi _n^T\tau }\cos (n\pi \xi ),\end{aligned}$$
(35b)
$$\begin{aligned} \overline{w}^H= & {} \sum _{n=1}^{\infty }\,\overline{w}_{n0}^H\, e^{{\rm i}\varpi _n^H\tau }\sin (n\pi \xi ), \\ \overline{\psi }^H= & {} \sum _{n=1}^{\infty }\,\overline{\psi }_{n0}^H\, e^{{\rm i}\varpi _n^H\tau }\cos (n\pi \xi ), \end{aligned}$$
(35c)

where \(\overline{w}_{n0}^{[.]}\) and \(\varpi _n^{[.]}\) are the dimensionless deflection amplitude and natural frequency associated with the \(n\)th vibration mode, \(\overline{\theta }_{n0}^T\) and \(\overline{\psi }_{n0}^H\) represent the angle of deformation associated with the \(n\)th vibration mode of the NTBT and NHOBT, respectively. By substituting Eqs. (35a), (35b), and (35c) into Eqs. (9), (19), and (29), respectively, and by setting the determinant of the resulted matrices of the coefficients equal to zero, the dimensionless natural frequencies can be calculated for the proposed beam models as will be displayed in the following parts.

1.1 A.1 Exact frequency analysis of MASWCNTs based on the NRBT

The \(n\)th flexural frequency, \(\varpi _{n}^R\), is calculated as:

$$\begin{aligned} \varpi _n^R=\sqrt{\frac{(n\pi )^2\left( \left( \overline{H}_x^R\right) ^2 +\overline{K}_r^R\right) +\overline{K}_t^R}{1+\left( \frac{n\pi }{\lambda }\right) ^2} +\frac{(n\pi )^4}{\left( 1+(n\pi \mu )^2\right) \left( 1+\left( \frac{n\pi }{\lambda }\right) ^2\right) }}. \end{aligned}$$
(36)

1.2 A.2 Exact frequency analysis of MASWCNTs based on the NTBT

The \(n\)th flexural frequency, \(\varpi _{n}^T\), is obtained as:

$$\begin{aligned} \varpi _n^T=\sqrt{\frac{\alpha _{2n}^2+\left( \frac{\alpha _{3n}}{\lambda }\right) ^2 -\sqrt{\left( \alpha _{2n}^2-\left( \frac{\alpha _{3n}}{\lambda }\right) ^2\right) ^2+ 4\left( \frac{n\pi }{\lambda }\right) ^2}}{2\alpha _{1n}^2}}, \end{aligned}$$
(37)

where \(\alpha _{in}^2;\,i=1,2,3\) are as:

$$\begin{aligned} \alpha _{1n}^2=\lambda ^{-2}\left( 1+(n\pi \mu )^2\right) , \\ \alpha _{2n}^2=1+\eta (n\pi )^2+\overline{K}_r^T\left( 1+(n\pi \mu )^2\right) , \\ \alpha _{3n}^2=(n\pi )^2+\left( 1+(n\pi \mu )^2\right) \left( \overline{K}_t^T+(n\pi )^2\left( \overline{H}_x^T\right) ^2\right) . \end{aligned}$$
(38)

1.3 A.3 Exact frequency analysis of MASWCNTs based on the NHOBT

The \(n\)th flexural frequency, \(\varpi _{n}^H\), is derived as follows:

$$\begin{aligned} \varpi _n^H=\sqrt{\frac{B_n^H-\sqrt{\left( B_n^H\right) ^2-4A_n^H C_n^H}}{2A_n^H}}, \end{aligned}$$
(39)

where

$$\begin{aligned} A_n^H= & {} \left( 1+(n\pi \mu )^2\right) ^2\left( 1+\left( \gamma _2^2+\gamma _1^2\gamma _6^2\right) (n\pi )^2\right) , \\ B_n^H= & {} \left( 1+(n\pi \mu )^2\right) \left( \begin{array}{l} (n\pi \gamma _3)^2+(n\pi )^4+\left( \overline{K}_t^H+\left( n\pi \overline{H}_x^H\right) ^2\right) \left( 1+(n\pi \mu )^2\right) \\ +\left( 1+\left( n\pi \gamma _2\right) ^2\right) \left( \gamma _7^2+\left( n\pi \gamma _8\right) ^2+\overline{K}_r^H\left( 1+\left( n\pi \mu \right) ^2\right) \right) \\ +(n\pi )^2\left( \gamma _6^2\left( \gamma _3^2-\left( n\pi \gamma _4\right) ^2\right) +\gamma _1^2\left( \gamma _7^2-\left( n\pi \gamma _9\right) ^2\right) \right) \end{array}\right) , \\ C_n^H= & {} \left( \gamma _7^2+\left( n\pi \gamma _8\right) ^2+\overline{K}_r^H\left( 1+\left( n\pi \mu \right) ^2\right) \right) \\&\times \left( \left( n\pi \gamma _3\right) ^2+\left( n\pi \right) ^4+\left( \overline{K}_t^H+\left( n\pi \overline{H}_x^H\right) ^2\right) \left( 1+(n\pi \mu )^2\right) \right) \\&-(n\pi )^2\left( \gamma _7^2-\left( n\pi \gamma _9\right) ^2\right) \left( \gamma _3^2-\left( n\pi \gamma _4\right) ^2\right) . \end{aligned}$$
(40)

Appendix B: Application of AMM for frequency analysis of simply supported SWCNTs subjected to a sinusoidal magnetic field

1.1 B.1 Frequency analysis of MASWCNTs modeled based on the NRBT using AMM

In order to analyze the problem via AMM, the dimensionless transverse displacement of the MASWCNT is stated in terms of appropriate mode shape functions pertinent to the considered boundary conditions:

$$\begin{aligned} \overline{w}^R(\xi ,\tau )=\sum _{k=1}^{NM} \phi _k^{w}(\xi ) \overline{w}_{k}^R(\tau ), \end{aligned}$$
(41)

where \(\phi _k^{w}\) denotes the \(k\)th mode shape function of SWCNT’s deflection, and \(NM\) is the number of vibration modes. For a simply supported MASWCNT, such modes are considered as: \(\phi _k^{w}(\xi )=\sqrt{2}\sin (k\pi \xi )\). By substituting Eq. (41) into Eqs. (14b) and (14c),

$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^R\right] _{kl}= & {} \left( 1+\left( \frac{\pi k}{\lambda }\right) ^2\right) \left( 1+\left( \mu \pi k\right) ^2\right) \delta _{kl};\,k,l=1,2,\ldots ,NM,\end{aligned}$$
(42a)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^R\right] _{kl}= & {} \left( k^2 l^2 \pi ^4+\left( \frac{\pi ^2}{2}\left( k^2+1\right) \left( \overline{H}_{x0}^R\right) ^2+\,\overline{K}_t^R+\overline{K}_r^R\pi ^2 k l \right) \left( 1+(\mu \pi k)^2\right) \right) \,\delta _{kl}, \end{aligned}$$
(42b)

where \(\delta _{kl}\) is the Kronecker delta. By following the procedure mentioned in Sect. 3.2, the natural frequencies of the magnetically affected nanostructure could be determined.

1.2 B.2 Frequency analysis of MASWCNTs modeled based on the NTBT using AMM

For a simply supported MASWCNT in which modeled based on the NTBT, the dimensionless deformation fields are expressed by:

$$\begin{aligned} \overline{w}^T(\xi ,\tau )=\sum _{k=1}^{NM} \phi _k^{w}(\xi ) \overline{w}_{k}^T(\tau ), \overline{\theta }^T(\xi ,\tau )=\sum _{k=1}^{NM} \phi _k^{\theta }(\xi ) \overline{\theta }_{k}^T(\tau ), \end{aligned}$$
(43)

where \(\phi _k^{w}(\xi )=\sqrt{2}\sin (k\pi \xi )\) and \(\phi _k^{\theta }(\xi )=\sqrt{2}\cos (k\pi \xi )\) in order are the \(k\)th mode shapes pertinent to the deflection and rotational fields of the MASWCNT modeled based on the NTBT. By substituting Eq. (43) into Eqs. (24c)–(24h), the nonzero mass and stiffness matrices are calculated as:

$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^T\right] _{kl}^{w w}= & {} \left( 1+kl\left( \mu \pi \right) ^2\right) \delta _{kl}, \end{aligned}$$
(44a)
$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^T\right] _{kl}^{\theta \theta }=\, & {} \lambda ^{-2} \left( 1+kl\left( \mu \pi \right) ^2\right) \delta _{kl}, \end{aligned}$$
(44b)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^T\right] _{kl}^{w w}= & {} \left( kl\pi ^2+\left( 1+(\mu \pi k)^2\right) \left( \frac{\pi ^2}{2}\left( k^2+1\right) \left( \overline{H}_{x0}^T\right) ^2+\overline{K}_t^T \right) \right) \,\delta _{kl}, \end{aligned}$$
(44c)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^T\right] _{kl}^{w \theta }= & {} -k\pi \delta _{kl}, \end{aligned}$$
(44d)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^T\right] _{kl}^{\theta w}= & {} -l\pi \delta _{kl}, \end{aligned}$$
(44e)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^T\right] _{kl}^{\theta \theta }= & {} \left( 1+ \eta kl\pi ^2+kl\left( 1+(\mu \pi )^2\right) \overline{K}_r^T\right) \delta _{kl}. \end{aligned}$$
(44f)

Finally, by introducing Eqs. (44a)–(44f) to Eq. (23) and following the procedure mentioned in Sect. 3.2, the dimensionless frequencies of the SWCNT subjected to the sinusoidal magnetic field could be readily evaluated.

1.3 B.3 Frequency analysis of MASWCNTs modeled based on the NHOBT using AMM

For a simply supported SWCNT modeled according to the NHOBT, the dimensionless deformation fields can be stated as follows:

$$\begin{aligned} \overline{w}^H(\xi ,\tau )=\sum _{k=1}^{NM} \phi _k^{w}(\xi ) \overline{w}_{k}^H(\tau ), \overline{\psi }^H(\xi ,\tau )=\sum _{k=1}^{NM} \phi _k^{\psi }(\xi ) \overline{\psi }_{k}^H(\tau ), \end{aligned}$$
(45)

where \(\phi _k^{w}(\xi )=\sqrt{2}\sin (k\pi \xi )\) and \(\phi _k^{\psi }(\xi )=\sqrt{2}\cos (k\pi \xi )\). By introducing Eq. (45) to Eqs. (34c)–(34j), the nonzero mass and stiffness matrices are obtained as:

$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^H\right] _{kl}^{\psi \psi }= & {} \left( 1+kl(\mu \pi )^2\right) \delta _{kl}, \end{aligned}$$
(46a)
$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^H\right] _{kl}^{\psi w}= & {} -\gamma _6^2\, k\pi \left( 1+(\mu \pi l)^2\right) \delta _{kl}, \end{aligned}$$
(46b)
$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^H\right] _{kl}^{w w}= & {} \left( 1+(\mu \pi kl)^2\right) \left( 1+\left( \pi k l \gamma _2\right) ^2\right) \delta _{kl}, \end{aligned}$$
(46c)
$$\begin{aligned} \left[ {\overline{{\mathbf {M}}}}_b^H\right] _{kl}^{w \psi }= & {} -\gamma _1^2\, k\pi \left( 1+(\mu \pi )^2 kl \right) \delta _{kl}, \end{aligned}$$
(46d)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^H\right] _{kl}^{w w}= & {} \left( \gamma _3^2 \pi ^2 kl + \pi ^4 k^2l^2+\left( 1+(\mu \pi k)^2\right) \left( \frac{\pi ^2}{2}\left( k^2+1\right) \left( \overline{H}_{x0}^H\right) ^2+\overline{K}_t^H\right) \right) \delta _{kl}, \end{aligned}$$
(46e)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^H\right] _{kl}^{w\psi }=\, & {} k\pi \left( \gamma _3^2-kl\pi ^2\gamma _4^2\right) \delta _{kl}, \end{aligned}$$
(46f)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^H\right] _{kl}^{\psi w}=\, & {} l\pi \left( \gamma _7^2-kl\pi ^2\gamma _9^2\right) \delta _{kl}, \end{aligned}$$
(46g)
$$\begin{aligned} \left[ {\overline{{\mathbf {K}}}}_b^H\right] _{kl}^{\psi \psi }= & {} \left( \gamma _7^2+ kl\pi ^2\gamma _8^2+\overline{K}_r^H\left( 1+kl(\mu \pi )^2\right) \right) \delta _{kl}. \end{aligned}$$
(46h)

By substituting Eqs. (46a)–(46h) into Eq. (33) and solving the resulting set of eigenvalue equations based on the procedure explained in Sect. 3.2, the dimensionless natural frequencies of the SWCNT acted upon by the sinusoidal magnetic field are calculated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, K. Free vibrations of elastically embedded stocky single-walled carbon nanotubes acted upon by a longitudinally varying magnetic field. Meccanica 50, 3041–3067 (2015). https://doi.org/10.1007/s11012-015-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0184-2

Keywords

Navigation