Skip to main content
Log in

Deformation of a rotating two-temperature generalized-magneto thermoelastic medium with internal heat source due to hydrostatic initial stress

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The three-phase-lag model and Green–Naghdi theory without energy dissipation are employed to study the deformation of a two-temperature generalized-magneto thermoelastic medium with an internal heat source that is moving with a constant speed under the hydrostatic initial stress and the rotation. Normal mode analysis is used to obtain the analytical expressions of the displacement components, force stress, thermal temperature and conductive temperature. The numerical results are given and presented graphically when mechanical force is applied. Comparisons are made with the results of the two models for two different values of the hydrostatic initial stress. Also, comparisons are made with results of the two models with and without the rotation as well as the two-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:240–253

    Article  MathSciNet  ADS  Google Scholar 

  2. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermo-elasticity. J Mech Phys Solid 15:299–309

    Article  ADS  Google Scholar 

  3. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  Google Scholar 

  4. Hetnarski RB, Ignaczak J (1994) Generalized thermoelasticity: response of semi-space to a short laser pulse. J Therm Stress 17:377–396

    Article  MathSciNet  Google Scholar 

  5. Green AE, Naghdi PM (1991) A re-examination of the basic postulate of thermo-mechanics. Proc R Soc Lond 432:171–194

    Article  MathSciNet  ADS  Google Scholar 

  6. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:253–264

    Article  MathSciNet  ADS  Google Scholar 

  7. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  Google Scholar 

  8. Tzou DY (1995) A unified approach for heat conduction from macro-to micro-scales. ASME J Heat Transf 117:8–16

    Article  Google Scholar 

  9. Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. J Appl Mech Rev 51:705–729

    Article  ADS  Google Scholar 

  10. Choudhuri SR (2007) On a thermoelastic three-phase-lag model. J Therm Stress 30:231–238

    Article  Google Scholar 

  11. Quintanilla R, Racke R (2008) A note on stability in three-phase-lag heat conduction. Int J Heat Mass Transf 51:24–29

    Article  Google Scholar 

  12. Kar A, Kanoria M (2009) Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. J Appl Math Model 33:3287–3298

    Article  MathSciNet  Google Scholar 

  13. Quintanilla R (2009) Spatial behaviour of solutions of the three-phase-lag heat equation. J Appl Math Comput 213:153–162

    Article  MathSciNet  Google Scholar 

  14. Kanoria M, Mallik SH (2010) Generalized thermoviscoelastic interaction due to a periodically varying heat source with three-phase-lag effect. Eur J Mech A Solids 29:695–703

    Article  Google Scholar 

  15. Abbas IA (2014) Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity. J Comput Theor Nanosci 11:987–992

    Article  Google Scholar 

  16. Othman MIA, Said SM (2014) 2D problem of magneto-thermoelasticity fiber-reinforced medium under temperature dependent properties with three-phase-lag model. J Mecc 49:1225–1241

    Article  MathSciNet  Google Scholar 

  17. Chen PJ, Gurtin ME (1968) On a theory of heat conduction involving two temperatures. Z Angew Math Phys 19:614–627

    Article  Google Scholar 

  18. Chen PJ, Gurtin ME, Williams WO (1968) A note on non simple heat conduction. Z Angew Math Phys 19:969–970

    Article  Google Scholar 

  19. Chen PJ, Gurtin ME, Williams WO (1969) On the thermodynamics of non-simple elastic materials with two-temperatures. Z Angew Math Phys 20:107–112

    Article  Google Scholar 

  20. Warren WE, Chen PJ (1973) Wave propagation in the two temperatures theory of thermoelasticity. J Acta Mech 16:21–33

    Article  Google Scholar 

  21. Youssef HM (2005) Theory of two-temperature generalized thermoelasticity. IMA J Appl Math 71:383–390

    Article  MathSciNet  Google Scholar 

  22. Puri P, Jordan PM (2006) On the propagation of harmonic plane wanes under the two temperature theory. Int J Eng Sci 44:1113–1126

    Article  MathSciNet  Google Scholar 

  23. Abbas IA, Youssef HM (2009) Finite element method of two-temperature generalized magneto-thermoelasticity. J Arch Appl Mech 79:917–925

    Article  ADS  Google Scholar 

  24. Kumar R, Mukhopadhyay S (2010) Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity. Int J Eng Sci 48:128–139

    Article  MathSciNet  Google Scholar 

  25. Das P, Kanoria M (2012) Two-temperature magneto-thermo-elastic response in a perfectly conducting medium based on GN-III model. Int J Pure Appl Math 81:199–229

    Google Scholar 

  26. Abbas IA, Zenkour AM (2014) Two-temperature generalized thermoplastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times. J Comput Theor Nanosci 11:1–7

    Article  Google Scholar 

  27. Othman MIA, Hasona WM, Abd-Elaziz EM (2014) Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase lag model. Can J Phys 92:149–158

    Article  Google Scholar 

  28. Chand D, Sharma JN, Sud SP (1990) Transient generalized magneto thermo-elastic waves in a rotating half-space. Int J Eng Sci 28:547–556

    Article  Google Scholar 

  29. Choudhuri SKR, Roy GC (1990) Temperature-rate dependent magneto-thermoelastic waves in a finitely conducting elastic half-space. J Comput Math Appl 19:85–93

    Article  Google Scholar 

  30. Ezzat MA, Othman MIA (2000) Electromagneto-thermoelastic plane waves with two relaxation times in a medium of perfect conductivity. Int J Eng Sci 38:107–120

    Article  Google Scholar 

  31. Othman MIA, Song YQ (2008) Effect of rotation on plane waves of the generalized electro magneto-thermo-viscoelasticity with two relaxation times. J Appl Math Model 32:811–825

    Article  MathSciNet  Google Scholar 

  32. Othman MIA, Said SM (2013) Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories. Int J Thermophys 34:366–383

    Article  ADS  Google Scholar 

  33. Montanaro A (1999) On singular surface in isotropic linear thermoelasticity with initial stress. J Acoust Soc Am 106:1586–1588

    Article  ADS  Google Scholar 

  34. Ahmed SM (2000) Rayleigh waves in a thermoelastic granular medium under initial stress. Int J Math Math Sci 23:627–637

    Article  MathSciNet  Google Scholar 

  35. Othman MIA, Said SM (2012) The effect of mechanical force on generalized thermoelasticity in a fiber-reinforced under three theories. Int J Thermophys 33:1082–1099

    Article  ADS  Google Scholar 

  36. Schoenberg M, Censor D (1973) Elastic waves in rotating media. J Quart Appl Math 31:115–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia M. Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, S.M. Deformation of a rotating two-temperature generalized-magneto thermoelastic medium with internal heat source due to hydrostatic initial stress. Meccanica 50, 2077–2091 (2015). https://doi.org/10.1007/s11012-015-0136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0136-x

Keywords

Navigation