Skip to main content
Log in

Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A variational approach based on Hamilton’s principle is used to develop the governing equations for the dynamic analysis of plates using the Reddy third-order shear deformable plate theory with strain gradient and velocity gradient. The plate is made of homogeneous and isotropic elastic material. The stain energy, kinetic energy, and the external work are generalized to capture the gradient elasticity (i.e., size effect) in plates modeled using the third-order shear deformation theory. In this framework, both strain and velocity gradients are included in the strain energy and kinetic energy expressions, respectively. The equations of motion are derived, along with the consistent boundary equations. Finally, the resulting third-order shear deformation (strain and velocity) gradient plate theory is specialized to the first-order and classical strain gradient plate theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mindlin RD (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3:1–7

    Article  Google Scholar 

  2. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MATH  MathSciNet  Google Scholar 

  3. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  4. Koiter WT (1964) Couple-stresses in the theory of elasticity: I and II, Koninklijke Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Arts and Sciences) B67:17–44

  5. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17:85–112

    Article  MATH  MathSciNet  Google Scholar 

  6. Green AE, Naghdi PM, Rivlin RS (1965) Directors and multipolar displacements in continuum mechanics. Int J Eng Sci 2:611–620

    Article  MATH  Google Scholar 

  7. Green AE, Naghdi PM (1967) Micropolar and director theories of plates. Q J Mech Appl Math 20:183–199

    Article  MATH  Google Scholar 

  8. Green AE, Naghdi PM (1995) A unified procedure for construction of theories of deformable media. II. Generalized continua. Proc R Soc Lond A 448:357–377

    Article  ADS  MathSciNet  Google Scholar 

  9. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MATH  MathSciNet  Google Scholar 

  10. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MATH  MathSciNet  Google Scholar 

  11. Srinivasa AR, Reddy JN (2013) A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Karman plates and beams. J Mech Phys Solids 61:873–885

    Article  ADS  MathSciNet  Google Scholar 

  12. Reddy JN, Srinivasa AR (2014) Nonlinear theories of beams and plates accounting for moderate rotations and material length scales. Int J Non Linear Mech (In press)

  13. Gao XL, Park SK (2007) Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int J Solids Struct 44:7486–7499

    Article  MATH  Google Scholar 

  14. Gao XL, Park SK (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys 59:904–917

    Article  MATH  MathSciNet  Google Scholar 

  15. Papargyri-Beskou S, Giannakopoulos AE, Beskos DE (2010) Variational analysis of gradient elastic flexural plates under static loading. Int J Solids Struct 47:2755–2766

    Article  MATH  Google Scholar 

  16. Challamel N (2013) Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Compos Struct 105:351–368

    Article  Google Scholar 

  17. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  18. Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates. Elsevier, London

    MATH  Google Scholar 

  19. Reddy JN (2007) Theory and analysis of elastic plates and shells. CRC Press, Taylor & Francis, Philadelphia

    Google Scholar 

  20. Reddy JN (2006) Mechanics of laminated composite plates and shells, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  21. Lazopoulos KA (2009) On bending of strain gradient elastic micro-plates. Mech Res Commun 36:777–783

    Article  MATH  MathSciNet  Google Scholar 

  22. Aghababaei R, Reddy JN (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326:277–289

    Article  ADS  Google Scholar 

  23. Ramezani S (2012) A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int J Mech Sci 57:34–42

    Article  Google Scholar 

  24. Ma HM, Gao XL, Reddy JN (2011) A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech 220:217–235

    Article  MATH  Google Scholar 

  25. Gao X-L, Huang JX, Reddy JN (2013) A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech 224:2699–2718

    Article  MATH  MathSciNet  Google Scholar 

  26. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  27. Mousavi SM, Paavola J (2014) Analysis of plate in second gradient elasticity. Arch Appl Mech 84:1135–1143

    Article  Google Scholar 

  28. Wang B, Liu M, Zhao J, Zhou S (2014) A size-dependent Reddy-Levinson beam model based on a strain gradient elasticity theory. Meccanica 49(6):1427–1446

    Article  MATH  MathSciNet  Google Scholar 

  29. Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49(7):1679–1695

    Article  MATH  MathSciNet  Google Scholar 

  30. Reddy JN (2013) An introduction to continuum mechanics, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  31. Altan BS, Aifantis EC (1992) On the structure of the mode III crack-tip in gradient elasticity. Scripta Metall 26:319–324

    Article  Google Scholar 

  32. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Article  Google Scholar 

  33. Truskinovsky L, Vainchtein A (2006) Quasicontinuum models of dynamic phase transitions. Contin Mech Thermodyn 18:1–21

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Georgiadis HG, Vardoulakis I, Velgaki EG (2004) Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J Elast 74:17–45

    Article  MATH  MathSciNet  Google Scholar 

  35. Polizzotto C (2012) A gradient elasticity theory for second-grade materials and higher order inertia. Int J Solids Struct 49:2121–2137

    Article  Google Scholar 

  36. Polizzotto C (2013) A second strain gradient elasticity theory with second velocity gradient inertia—part I: constitutive equations and quasi-static behavior. Int J Solids Struct 50:3749–3765

    Article  Google Scholar 

  37. Fried E, Gurtin ME (2006) Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch Ration Mech Anal 182:513–554

    Article  MATH  MathSciNet  Google Scholar 

  38. Malvern LE (1969) Introduction to mechanics of a continuous medium. Prentice-Hall Inc, Inglewood Cliffs

    Google Scholar 

  39. Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40:7399–7423

    Article  MATH  MathSciNet  Google Scholar 

  40. Serpilli M, Krasucki F, Geymonat G (2013) An asymptotic strain gradient Reissner-Mindlin plate model. Meccanica 48:2007–2018

    Article  MATH  MathSciNet  Google Scholar 

  41. Neff P (2004) A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin Mech Thermodyn 16:577–628

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Lazar M, Maugin GA, Aifantis EC (2005) On dislocations in a special class of generalized elasticity. Phys Stat Sol (b) 242:2365–2390

  43. Tahaei Yaghoubi S, Mousavi SM, Paavola J (2015) Strain and velocity gradient theory for higher-order shear deformable beams. Arch Appl Mech (accepted)

Download references

Acknowledgments

The third author gratefully acknowledge the support of this work by the FidiPro grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mousavi.

Appendices

Appendix 1

In 3D elasticity, the strain energy is [1]

$$ \delta U_{t} = - \int\limits_{V} {\sigma_{ij,j} \delta u_{i} dv} + \int\limits_{\delta V} {\left[ {n_{j} \sigma_{ij} - \left( {n_{k} \tau_{ijk} } \right)_{,j} + \left( {n_{k} n_{l} \tau_{ijk} } \right)_{,l} n_{j} } \right]\delta u_{i} da} + \int\limits_{\delta V} {n_{j} n_{k} \tau_{ijk} D\left( {\delta u_{i} } \right)da} + \oint\limits_{\varGamma } {[[m_{j} n_{k} \tau_{ijk} ]]\delta u_{i} dl}$$
(60)

while D = n l l is the normal (directional) derivative operator. The external work [13]

$$ \delta W_{t} = \int\limits_{V} {f_{i} \delta u_{i} dv} + \int\limits_{\partial V} {t_{i} \delta u_{i} da} + \int\limits_{\partial V} {q_{i} D\left( {\delta u_{i} } \right)da} $$
(61)

and the kinetic energy

$$ \delta K_{t} = \int\limits_{\varOmega } {\rho \left( {\dot{u}_{i} \delta \dot{u}_{i} + l^{2} \dot{u}_{i,j} \delta \dot{u}_{i,j} } \right)dv} $$
(62)

can be used in the Hamilton’s principle. General stress components (σ ij ) are defined as

$$ \sigma_{ij} \equiv \tau_{ij} - \tau_{ijk,k} = \tau_{ij} - l^{2} \tau_{ij,kk} $$
(63)

Assuming that the initial (t = 0) and final (t = T) configurations of the plate are prescribed (initial and final conditions), substitution of (A1, A2 and A3) in Hamilton’s principle results in

$$ \int_{0}^{T} {\left\{ {\int\limits_{V} {\left( {\sigma_{ij,j} + f_{i} - \rho \textit{\"{v}}_{i} } \right)\delta u_{i} dv} + \int\limits_{\partial V} {\left[ {t_{i} - n_{j} \sigma_{ij} + \left( {n_{k} \tau_{ijk} } \right)_{,j} - \left( {n_{k} n_{l} \tau_{ijk} } \right)_{,l} n_{j} - n_{j} \rho l_{k}^{2} \textit{\"{u}}_{i,j} } \right]\delta u_{i} da} } \right.} \left. { + \int\limits_{\delta V} {\left[ {q_{i} - n_{j} n_{k} \tau_{ijk} } \right]D\left( {\delta u_{i} } \right)da} - \oint\limits_{\varGamma } {[[m_{j} n_{k} \tau_{ijk} ]]\delta u_{i} dl} } \right\}dt = 0 $$
(64)

while v i are the general stress and displacement components, i.e.

$$ v_{i} \equiv u_{i} - l_{k}^{2} u_{i,kk} $$
(65)

In this approach, it is challenging to apply the dimension reduction to the integral over the boundaries.

Appendix 2

The non-zero stress components of first gradient elasticity for the TSDT are

$${\tau_{\alpha \beta } = \lambda^{\prime}\delta_{\alpha \beta } \left[ {u_{0\gamma ,\gamma } + z\phi_{\gamma ,\gamma } - cz^{3} \left( {\phi_{\gamma ,\gamma } + u_{0z,\gamma \gamma } } \right)} \right] + \mu \left[ {\left( {u_{0\alpha ,\beta } + u_{0\beta ,\alpha } } \right) + z\left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } } \right) - cz^{3} \left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } + 2u_{0z,\alpha \beta } } \right)} \right]},$$
$$ \tau_{\alpha z} = \mu \left( {1 - 3cz^{2} } \right)\left( {\phi_{\alpha } + u_{0z,\alpha } } \right) $$
(66)

and

$${\tau_{\alpha \beta \delta } = l^{2} \lambda^{\prime}\delta_{\alpha \beta } \left[ {u_{0\gamma ,\gamma \delta } + z\phi_{\gamma ,\gamma \delta } - cz^{3} \left( {\phi_{\gamma ,\gamma \delta } + u_{0z,\gamma \gamma \delta } } \right)} \right]+ l^{2} \mu \left[ {\left( {u_{0\alpha ,\beta \delta } + u_{0\beta ,\alpha \delta } } \right) + z\left( {\phi_{\alpha ,\beta \delta } + \phi_{\beta ,\alpha \delta } } \right) - cz^{3} \left( {\phi_{\alpha ,\beta \delta } + \phi_{\beta ,\alpha \delta } + 2u_{0z,\alpha \beta \delta } } \right)} \right]},$$
$$ { \tau_{\alpha \beta z} = l^{2} \lambda^{\prime}\delta_{\alpha \beta } \left[ {\phi_{\gamma ,\gamma } - 3cz^{2} \left( {\phi_{\gamma ,\gamma } + u_{0z,\gamma \gamma } } \right)} \right] + l^{2} \mu \left[ { + \left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } } \right) - 3cz^{2} \left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } + 2u_{0z,\alpha \beta } } \right)} \right] }, $$
(67)
$${\tau_{\alpha z\delta } = l^{2} \mu \left( {1 - 3cz^{2} } \right)\left( {\phi_{\alpha ,\delta } + u_{0z,\alpha \delta } } \right)},$$
$$ \tau_{\alpha zz} = - 6l^{2} cz\mu \left( {\phi_{\alpha } + u_{0z,\alpha } } \right)$$

while α, β and δ are x and y.

Appendix 3

The general bending moments in terms of generalized displacements are

$${\left\{ {N_{\alpha \beta } ,R_{\alpha \beta } } \right\} = \left\{ {g_{1} ,g_{3} } \right\}\left[ {\lambda^{\prime}\delta_{\alpha \beta } u_{0\gamma ,\gamma } + \mu \left( {u_{0\alpha ,\beta } + u_{0\beta ,\alpha } } \right)} \right]},$$
$$ { \left\{ {M_{\alpha \beta } ,P_{\alpha \beta } ,N_{\alpha \beta }^{z} ,R_{\alpha \beta }^{z} } \right\} = \lambda^{\prime}\delta_{\alpha \beta } \left[ {\left\{ {g_{3} ,g_{5} ,g_{1} ,g_{3} } \right\}\phi_{\gamma ,\gamma } - c\left\{ {g_{5} ,g_{7} ,3g_{3} ,3g_{5} } \right\}\left( {\phi_{\gamma ,\gamma } + u_{0z,\gamma \gamma } } \right)} \right] + \mu \left[ {\left\{ {g_{3} ,g_{5} ,g_{1} ,g_{3} } \right\}\left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } } \right) - c\left\{ {g_{5} ,g_{7} ,3g_{3} ,3g_{5} } \right\}\left( {\phi_{\alpha ,\beta } + \phi_{\beta ,\alpha } + 2u_{0z,\alpha \beta } } \right)} \right]}, $$
(68)
$${M_{\alpha z}^{z} = - 6cg_{3} \mu \left( {\phi_{\alpha } + u_{0z,\alpha } } \right)},$$
$$ \left\{ {N_{\alpha z} ,R_{\alpha z} } \right\} = \mu \left( {\left\{ {g_{1} ,g_{3} } \right\} - 3c\left\{ {g_{3} ,g_{5} } \right\}} \right)\left( {\phi_{\alpha } + u_{0z,\alpha } } \right)$$

while

$$ g_{n} = \frac{{h^{n} }}{{n \times 2^{n - 1} }} $$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Paavola, J. & Reddy, J.N. Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica 50, 1537–1550 (2015). https://doi.org/10.1007/s11012-015-0105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0105-4

Keywords

Navigation