Skip to main content
Log in

The application of the geometric offset method to the rigid joint modeling in the differential quadrature element model updating of frame structures

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The following paper deals with the differential quadrature element (DQE) model updating of frame structures when the linear vibration behavior is of interest. To model the rigid L and T joints of the frame, a geometric offset method is employed to define a rigid region around each joint. The kinematic constraints due to the rigid joints, the equilibrium of axial and transverse forces, and the bending moments acting on the joint are utilized to model the joints in the DQE model of the frame. Then, to update the DQE model using the experimental natural frequencies, a minimization problem is defined to reduce an objective function based on the residuals between a measurement set obtained from modal testing on the frame and the corresponding DQE model predictions. Using the proposed approach, the DQE model of a three-story steel frame for in-plane vibrations is updated. To do so, several parameters of the model including the Young’s modulus, the density, the geometric offsets and mass parameters of the joints, and the stiffness of the rotational spring used to model the foundation are considered as the design parameters. The optimum values of the design parameters are then found by employing the particle swarm inspired multi-elitist artificial bee colony algorithm. The results of the model updating indicate a good coincidence of the modal parameters of the updated DQE and the experimental models. The sensitivity analysis also reveals that the highest eigenvalue sensitivities are to the joints’ parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bellman R, Casti J (1971) Differential quadrature and long term integration. J Math Anal Appl 34:235–238

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellman RE, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Tornabene F, Viola E (2009) Free vibration analysis of functionally graded panels and shells of revolution. Meccanica 44(3):255–281

    Article  MATH  Google Scholar 

  4. Malekzadeh P, Haghighi MG, Atashi MM (2011) Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. Meccanica 46(5):893–913

    Article  MATH  MathSciNet  Google Scholar 

  5. Yas MH, Jodaei A, Irandoust S, Aghdam MN (2012) Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations. Meccanica 47(6):1401–1423

    Article  MATH  MathSciNet  Google Scholar 

  6. Bambill DV, Rossit CA, Rossi RE, Felix DH, Ratazzi AR (2013) Transverse free vibration of non-uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6):1289–1311

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu GR, Wu TY (2001) In-plane vibration analyses of circular arches by the generalized differential quadrature rule. Int J Mech Sci 43(11):2597–2611

    Article  MATH  Google Scholar 

  8. Wu TY, Liu GR (2001) The generalized differential quadrature rule for fourth-order differential equations. Int J Numer Methods Eng 50(8):1907–1929

    Article  MATH  Google Scholar 

  9. Wang X, Tan M, Zhou Y (2003) Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method. Thin-Walled Struct 41(1):15–29

    Article  Google Scholar 

  10. Wang X, Liu F, Wang X, Gan L (2005) New approaches in application of differential quadrature method to fourth-order differential equations. Commun Numer Methods Eng 21(2):61–71

    Article  MATH  MathSciNet  Google Scholar 

  11. Viola E, Dilena M, Tornabene F (2007) Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches. J Sound Vib 299(1):143–163

    Article  ADS  Google Scholar 

  12. Zong Z, Zhang Y (2009) Advanced differential quadrature methods. CRC Press, Boca Raton

    MATH  Google Scholar 

  13. Chen CN (2008) Discrete element analysis methods of generic differential quadratures, vol 25. Springer, Berlin

    Google Scholar 

  14. Shu C, Chew YT, Liu Y (1998) Different interface approximations in multi-domain GDQ simulation of Czochralski bulk flows. Int J Numer Methods Heat Fluid Flow 8(4):424–444

    Article  MATH  Google Scholar 

  15. Liu GR, Wu TY (2001) Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J Sound Vib 246(3):461–481

    Article  ADS  Google Scholar 

  16. Chen CN (1995) A differential quadrature element method. In: Proceeding of the 1st international conference on engineering computation and computer simulation, vol 1, Changsha, China, pp 25–34

  17. Striz AG, Chen WL, Bert CW (1997) Free vibration of plates by the high accuracy quadrature element method. J Sound Vib 202(5):689–702

    Article  ADS  MATH  Google Scholar 

  18. Liu FL (2000) Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method. Int J Solids Struct 37(51):7671–7688

    Article  MATH  Google Scholar 

  19. Wang X, Wang Y (2002) On non-linear behaviour of spherical shallow shells bonded with piezoelectric actuators by the differential quadrature element method (DQEM). Int J Numer Methods Eng 53(6):1477–1490

    Article  MATH  Google Scholar 

  20. Wang X, Wang Y, Zhou Y (2004) Application of a new differential quadrature element method to free vibrational analysis of beams and frame structures. J Sound Vib 269(3):1133–1141

    Article  ADS  MATH  Google Scholar 

  21. Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80(13):1718–1742

    Article  MATH  MathSciNet  Google Scholar 

  22. Xing Y, Liu B, Liu G (2010) A differential quadrature finite element method. Int J Appl Mech 2(01):207–227

    Article  Google Scholar 

  23. Viola E, Tornabene F, Fantuzzi N (2013) Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Compos Struct 106:815–834

    Article  Google Scholar 

  24. Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542

    Article  MATH  MathSciNet  Google Scholar 

  25. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2014) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev. doi:10.1115/1.4028859

    MATH  Google Scholar 

  26. Zhong H, Yu T (2009) A weak form quadrature element method for plane elasticity problems. Appl Math Model 33(10):3801–3814

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhong H, Wang Y (2010) Weak form quadrature element analysis of Bickford beams. Eur J Mech A Solids 29(5):851–858

    Article  Google Scholar 

  28. Zhang R, Zhong H (2013) Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch Appl Mech 83(9):1309–1325

    Article  MATH  Google Scholar 

  29. Striz AG, Weilong C, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818

    Article  MATH  Google Scholar 

  30. Wang X, Gu H (1997) Static analysis of frame structures by the differential quadrature element method. Int J Numer Methods Eng 40(4):759–772

    Article  MATH  Google Scholar 

  31. Chen CN (1997) The two-dimensional frame model of the differential quadrature element method. Comput Struct 62(3):555–571

    Article  MATH  Google Scholar 

  32. Chen CN (2005) DQEM analysis of in-plane vibration of curved beam structures. Adv Eng Softw 36(6):412–424

    Article  ADS  MATH  Google Scholar 

  33. Rajasekaran S, Tochaei EN (2014) Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order. Meccanica 49(4):995–1009

    Article  MATH  MathSciNet  Google Scholar 

  34. Fatahi L, Moradi S (2013) Differential quadrature element model updating of frame structures. Proc Inst Mech Eng C J Mech Eng Sci 228(7):1094–1107

    Article  Google Scholar 

  35. Mottershead JE, Friswell MI, Ng GHT, Brandon JA (1996) Geometric parameters for finite element model updating of joints and constraints. Mech Syst Signal Process 10(2):171–182

    Article  ADS  Google Scholar 

  36. Ahmadian H, Mottershead JE, Friswell MI (1996) Joint modelling for finite element model updating. In: Proceeding 14th international modal analysis conference, Dearborn, MI, Feb 12–15, pp 591–596

  37. Horton B, Gurgenci H, Veidt M, Friswell MI (1999) Finite element model updating of the welded joints in a tubular H-frame. In: Proceeding 17th international modal analysis conference, Kissimmee, FL, Feb 8–11, pp 1556–1562

  38. Horton B, Gurgenci H, Veidt M, Friswell MI (2000) Finite element model updating of a welded space frame. In: Proceeding 18th international modal analysis conference, San Antonio, TX, Feb 7–10, pp 529–535

  39. Mottershead JE, James S (1998) Updating parameters for the model of a three storey aluminum space frame. In: Proceeding 16th international modal analysis conference, vol 1, Santa Barbara, CA, Feb 2–5, pp 8–11

  40. Ashlock D (2006) Evolutionary computation for modeling and optimization. Springer, Berlin

    MATH  Google Scholar 

  41. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding IEEE international conference on neural networks, vol 4, Perth, Australia, Nov 27–Dec 1, pp 1942–1948

  42. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  43. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK

  44. Moradi S, Fatahi L, Razi P (2010) Finite element model updating using bees algorithm. Struct Multidiscip Optim 42(2):283–291

    Article  Google Scholar 

  45. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Article  Google Scholar 

  46. Saada MM, Arafa MH, Nassef AO (2013) Finite element model updating approach to damage identification in beams using particle swarm optimization. Eng Optim 45(6):677–696

    Article  Google Scholar 

  47. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):687–697

    Article  MathSciNet  Google Scholar 

  48. Xiang Y, Peng Y, Zhong Y, Chen Z, Lu X, Zhong X (2014) A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput Optim Appl 57(2):493–516

    Article  MATH  MathSciNet  Google Scholar 

  49. Shu C, Du H (1997) Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beam and plates. Int J Solids Struct 34:819–835

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yi Xiang, a researcher from the Guangdong Baiyun University of China for providing the MATLAB code of the PS-MEABC algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Fatahi.

Appendices

Appendix 1

$$ {\mathbf{I}}_{\text{u}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{array} } \right]_{{N_{e} - 2,2N_{e} }} $$
(37)
$$ {\mathbf{I}}_{\text{v}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 \\ \end{array} } \right]_{{N_{e} - 4,2N_{e} }} $$
(38)
$$ {\mathbf{C}}_{v}^{(4)} = \left[ {\begin{array}{*{20}c} 0 & {C_{31}^{(4)} } & 0 & {C_{32}^{(4)} } & 0 & \cdots & 0 & {C_{{3N_{e} }}^{(4)} } \\ 0 & {C_{41}^{(4)} } & 0 & {C_{42}^{(4)} } & 0 & \cdots & 0 & {C_{{4N_{e} }}^{(4)} } \\ 0 & {C_{51}^{(4)} } & 0 & {C_{52}^{(4)} } & 0 & \cdots & 0 & {C_{{5N_{e} }}^{(4)} } \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & {C_{{(N_{e} - 2\;)1}}^{(4)} } & 0 & {C_{{(N_{e} - 2)\;2}}^{(4)} } & 0 & \cdots & 0 & {C_{{(N_{e} - 2\,)\,N_{e} }}^{(4)} } \\ \end{array} } \right]_{{N_{e} - 4,2N_{e} }} $$
(39)
$$ {\mathbf{C}}_{u}^{(2)} = \left[ {\begin{array}{*{20}c} {C_{21}^{(2)} } & 0 & {C_{22}^{(2)} } & 0 & {C_{23}^{(2)} } & \cdots & {C_{{2N_{e} }}^{(2)} } & 0 \\ {C_{31}^{(2)} } & 0 & {C_{32}^{(2)} } & 0 & {C_{33}^{(2)} } & \cdots & {C_{{3N_{e} }}^{(2)} } & 0 \\ {C_{41}^{(2)} } & 0 & {C_{42}^{(2)} } & 0 & {C_{43}^{(2)} } & \cdots & {C_{{4N_{e} }}^{(2)} } & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ {C_{{\left( {N_{e} - 1} \right)\,\,1}}^{(2)} } & 0 & {C_{{\left( {N_{e} - 1} \right)\,2}}^{(2)} } & 0 & {C_{{\left( {N_{e} - 1} \right)\,3}}^{(2)} } & \cdots & {C_{{\left( {N_{e} - 1} \right)\,\,N_{e} }}^{(2)} } & 0 \\ \end{array} } \right]_{{N_{e} - 2,2N_{e} }} $$
(40)
$$ \overline{{\mathbf{k}}}_{e} = \frac{{E_{e} A_{e} }}{{l_{e}^{2} }}\left[ {\begin{array}{*{20}c} {C_{21}^{(2)} } & 0 & {C_{22}^{(2)} } & 0 & \cdots & {C_{{2N_{e} }}^{(2)} } & 0 \\ {C_{31}^{(2)} } & 0 & {C_{32}^{(2)} } & 0 & \cdots & {C_{{3N_{e} }}^{(2)} } & 0 \\ 0 & {\frac{1}{{l_{e}^{2} }}C_{31}^{(4)} } & 0 & {\frac{1}{{l_{e}^{2} }}C_{32}^{(4)} } & \cdots & 0 & {\frac{1}{{l_{e}^{2} }}C_{{3N_{e} }}^{(4)} } \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ {C_{{\left( {N_{e} - 2} \right)1}}^{(2)} } & 0 & {C_{{\left( {N_{e} - 2} \right)2}}^{(2)} } & 0 & \cdots & {C_{{\left( {N_{e} - 2} \right)N_{e} }}^{(2)} } & 0 \\ 0 & {\frac{1}{{l_{e}^{2} }}C_{{\left( {N_{e} - 2} \right)1}}^{(4)} } & 0 & {\frac{1}{{l_{e}^{2} }}C_{{\left( {N_{e} - 2} \right)2}}^{(4)} } & \cdots & 0 & {\frac{1}{{l_{e}^{2} }}C_{{\left( {N_{e} - 2} \right)N_{e} }}^{(4)} } \\ {C_{{\left( {N_{e} - 1} \right)1}}^{(2)} } & 0 & {C_{{\left( {N_{e} - 1} \right)2}}^{(2)} } & 0 & \cdots & {C_{{\left( {N_{e} - 1} \right)N_{e} }}^{(2)} } & 0 \\ \end{array} } \right]_{{2N_{e} - 6,2N_{e} }} $$
(41)
$$ \overline{{\mathbf{m}}}_{e} = \rho_{e} A_{e} \left[ {\begin{array}{*{20}c} 0 & 0 & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & { - 1} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - 1} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & { - 1} & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & { - 1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & { - 1} & 0 & 0 & 0 \\ \end{array} } \right]_{{2N_{e} \text{ - }6,2N_{e} }} $$
(42)
$$ \overline{{\varvec{\updelta}}}_{i} = \left\{ {\overline{u}_{i}^{1} \quad \overline{v}_{i}^{1} \quad \overline{u}_{i}^{2} \quad \overline{v}_{i}^{2} \;\; \ldots \;\;\overline{u}_{i}^{{\text{N}_{i} \text{ - }1}} \quad \overline{v}_{i}^{{\text{N}_{i} \text{ - }1}} \quad \overline{u}_{i}^{{\text{N}_{i} }} \quad \overline{v}_{i}^{{\text{N}_{i} }} } \right\} $$
(43)

Appendix 2

2.1 The transformation matrices

As mentioned in Equation (44), \( {\text{T}}_{e} \) is the required transformation matrix that transforms the displacement vector of the eth element from global coordinate system to the local one. Since the continuity conditions are employed on the boundary points of each element, only the displacements of these points are expressed in the global coordinate system.

$$ \overline{{\varvec{\updelta}}}_{e} = {\mathbf{T}}_{e} {\varvec{\updelta}}_{e} $$
(44)

where

$$ {\mathbf{T}}_{e} = \left[ {\begin{array}{*{20}c} {{\mathbf{t}}_{e}^{1} } & {} & {} & {} & {} & {} \\ {} & {{\mathbf{t}}_{e}^{2} } & {} & {} & {} & {} \\ {} & {} & {{\mathbf{t}}_{e}^{3} } & {} & {} & {} \\ {} & {} & {} & \ddots & {} & {} \\ {} & {} & {} & {} & {{\mathbf{t}}_{e}^{{N_{e} - 1}} } & {} \\ {} & {} & {} & {} & {} & {{\mathbf{t}}_{e}^{{N_{e} }} } \\ \end{array} } \right]\;,{\mathbf{t}}_{e}^{1} = {\mathbf{t}}_{e}^{{N_{e} }} = \left[ {\begin{array}{*{20}c} {\cos \theta_{e} } & {\sin \theta_{e} } \\ { - \sin \theta_{e} } & {\cos \theta_{e} } \\ \end{array} } \right]\;,\;{\mathbf{t}}_{e}^{2} = \cdots = {\mathbf{t}}_{e}^{{N_{e} - 1}} = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] $$
(45)
$$ {\varvec{\updelta}}_{e} = \left\{ {\,u_{e}^{1} \;\,v_{e}^{1} \;\,u_{e}^{2} \,\,v_{e}^{2} \,\,\,\,\overline{u}_{e}^{3} \,\,\overline{v}_{e}^{3} \,\,\, \ldots \,\overline{u}_{e}^{{N_{e} - 2}} \,\overline{v}_{e}^{{N_{e} - 2}} \,\;\,u_{e}^{{N_{e} - 1}} \,v_{e}^{{N_{e} - 1}} \,\,u_{e}^{{N_{e} }} \;\,v_{e}^{{N_{e} }} } \right\}^{\text{T}} $$
(46)
$$ \overline{{\varvec{\updelta}}}_{e} = \left\{ {\,\overline{u}_{e}^{1} \;\,\overline{v}_{e}^{1} \;\,\overline{u}_{e}^{2} \,\,\overline{v}_{e}^{2} \,\,\,\,\overline{u}_{e}^{3} \,\,\overline{v}_{e}^{3} \,\,\, \ldots \,\overline{u}_{e}^{{N_{e} - 2}} \,\overline{v}_{e}^{{N_{e} - 2}} \,\;\,\overline{u}_{e}^{{N_{e} - 1}} \,\overline{v}_{e}^{{N_{e} - 1}} \,\,\overline{u}_{e}^{{N_{e} }} \;\,\overline{v}_{e}^{{N_{e} }} } \right\}^{\text{T}} $$
(47)

Moreover, the global to local coordinate transformation of the force vector (see Fig. 13) is achieved by Equation (48).

$$ {\bar{\mathbf{F}}}_{e} = {\hat{\mathbf{T}}}_{e} {\mathbf{F}}_{e} $$
(48)

where

$$ {\hat{\mathbf{T}}}_{e} = \left[ {\begin{array}{*{20}c} {{\hat{\mathbf{t}}}_{e}^{1} } & {} & {} & {} & {} & {} \\ {} & {{\hat{\mathbf{t}}}_{e}^{2} } & {} & {} & {} & {} \\ {} & {} & {{\hat{\mathbf{t}}}_{e}^{3} } & {} & {} & {} \\ {} & {} & {} & \ddots & {} & {} \\ {} & {} & {} & {} & {{\hat{\mathbf{t}}}_{e}^{{N_{e} - 1}} } & {} \\ {} & {} & {} & {} & {} & {{\hat{\mathbf{t}}}_{e}^{{N_{e} }} } \\ \end{array} } \right]\;,{\hat{\mathbf{t}}}_{e}^{1} = {\hat{\mathbf{t}}}_{e}^{{N_{e} }} = \left[ {\begin{array}{*{20}c} {\cos \theta_{e} } & {\sin \theta_{e} } \\ {\sin \theta_{e} } & { - \cos \theta_{e} } \\ \end{array} } \right]\;,\;{\hat{\mathbf{t}}}_{e}^{2} = \cdots = {\hat{\mathbf{t}}}_{e}^{{N_{e} - 1}} = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] $$
(49)
$$ {\mathbf{F}}_{e} = \left\{ {\,Fx_{e}^{1} \;\,Fy_{e}^{1} \;\,Fx_{e}^{2} \,\,Fy_{e}^{2} \,\;\overline{F} x_{e}^{3} \,\,\overline{F} y_{e}^{3} \,\, \ldots \,\,\overline{F} x_{e}^{{N_{e} - 2}} \,\,\overline{F} y_{e}^{{N_{e} - 2}} \,\,Fx_{e}^{{N_{e} - 1}} \,Fy_{e}^{{N_{e} - 1}} \,\,Fx_{e}^{{N_{e} }} \;\,Fy_{e}^{{N_{e} }} } \right\}^{\text{T}} $$
(50)
$$ \overline{{\mathbf{F}}}_{e} = \left\{ {\,\overline{F} x_{e}^{1} \;\,\overline{F} y_{e}^{1} \;\,\overline{F} x_{e}^{2} \,\,\overline{F} y_{e}^{2} \,\;\overline{F} x_{e}^{3} \,\,\overline{F} y_{e}^{3} \,\, \ldots \,\,\overline{F} x_{e}^{{N_{e} - 2}} \,\,\overline{F} y_{e}^{{N_{e} - 2}} \,\,\overline{F} x_{e}^{{N_{e} - 1}} \,\overline{F} y_{e}^{{N_{e} - 1}} \,\,\overline{F} x_{e}^{{N_{e} }} \;\,\overline{F} y_{e}^{{N_{e} }} } \right\}^{\text{T}} $$
(51)
Fig. 13
figure 13

The displacements, the forces and the moment in the local coordinate system of the eth element

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatahi, L., Moradi, S. & Ghanbarzadeh, A. The application of the geometric offset method to the rigid joint modeling in the differential quadrature element model updating of frame structures. Meccanica 50, 1509–1525 (2015). https://doi.org/10.1007/s11012-015-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0103-6

Keywords

Navigation