Skip to main content
Log in

Reduced order structural models for the calculation of wet contact forces due to impacts in hydraulic valves

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Impacts in hydraulic valves generate structure-borne sound. Numerical methods are applied to calculate the contact forces, which are related to the acoustic noise generation. The fluid between the moving valve stem and the end stop creates a squeeze film force. A model order reduction technique in two steps is applied to capture the flexibility of the impact bodies in a multi-physics system simulation. The first reduction step is based on modal truncation using normal and attachment modes. The second step aims to select the important states or modes within the model bandwidth based on Hankel singular values, where two selection procedures are compared. The squeeze film effect is represented by an analytical formula which is closely incorporated to the compliant contact model. This contact deformation relation for the wet impact has to account for the transition between the pure squeeze motion and the structural collision. Measurements are used to support the calculation results. The coupled calculation of elastic and hydraulic effects leads to improved models for predicting the noise design and the functionality of hydraulic valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Flores P, Ambrósio J, Claro JCP, Lankarani HM (2005) Influence of the contact—impact force model on the dynamic response of multi-body systems. P I Mech Eng K J MUL 220:21–34

    Google Scholar 

  2. Hunt KH, Crossley FRE (1975) Coefficient of restitution interpreted as damping in vibroimpact. J Appl Mech T ASME 7:440–445

    Article  Google Scholar 

  3. Lankarani HM, Nikravesh PE (1994) Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn 5:193–207

    Google Scholar 

  4. Flores P, Machado M, Silva MT, Martins JM (2011) On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst Dyn 25:357–375

    Article  MATH  Google Scholar 

  5. Goldsmith W (1960) Impact. Edward Arnold, London

    MATH  Google Scholar 

  6. Graff KF (1991) Wave motion in elastic solids. Dover, New York

    Google Scholar 

  7. Zhong ZH (1993) Finite element procedures for contact-impact problems. Oxford University Press, Oxford

    Google Scholar 

  8. Seifried R, Hu B, Eberhard P (2003) Numerical and experimental investigation of radial impacts on a half-circular plate. Multibody Syst Dyn 9:265–281

    Article  MATH  Google Scholar 

  9. Craig RR (2000) Coupling of Substructures for Dynamic Analyses: An Overview. 41st AIAA/ASME/ASCE/AHS/ASC Struct, Struct Dyn and Materials Conf, AIAA-2000-1573

  10. Hurty WC (1965) Dynamic analysis of structural systems using component modes. AIAA J 3:678–685

    Article  Google Scholar 

  11. MacNeal RH (1971) A hybrid method of component mode synthesis. Comput Struct 1:581–601

    Article  Google Scholar 

  12. Antoulas AC, Sorensen DC, Gugercin S (2001) A survey of model reduction methods for large-scale systems. Contemp Math 280:193–219

    Article  MathSciNet  Google Scholar 

  13. Lohmann B, Salimbahrami B (2004) Ordnungsreduktion mittels Krylov-Unter-raummethoden. Automatisierungstechnik 52:30–38

    Article  Google Scholar 

  14. Chahlaoui Y, Lemonnier D, Vandendorpe A, Van Dooren P (2006) Second-order balanced truncation. Linear Algebra Appl 415:373–384

    Article  MATH  MathSciNet  Google Scholar 

  15. Gawronski WK (1998) Dynamics and control of structures: a modal approach. Springer, New York

    Book  MATH  Google Scholar 

  16. Böswirth L (1978) Zur Berechnung des Quetsch- und Klebeeffektes bei dünnen flüssigkeitsgefüllten Spalten. Fortschr Ber VDI 7(47):1–48

    Google Scholar 

  17. Hori Y (2006) Hydrodynamic lubrication. Springer, Berlin

    MATH  Google Scholar 

  18. Rubin S (1975) Improved component-mode representation for structural dynamic analysis. AIAA J 13:995–1006

    Article  ADS  MATH  Google Scholar 

  19. Machado M, Moreira P, Flores P, Lankarani HM (2012) Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech Mach Theory 53:99–121

    Article  Google Scholar 

  20. Babitsky VI (1998) Theory of vibro-impact systems and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  21. ANSYS, Inc. (2009) ANSYS Classic, ANSYS Workbench. Release 12.0

  22. Gérardin M, Rixen D (1994) Mechanical vibrations. Wiley, Paris

    Google Scholar 

  23. Balmes E, Bianchi J, Leclère J (2009) Structural Dynamics Toolbox 6.2. SDTools, Paris

  24. Antoulas AC (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  25. Moore BC (1981) Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans Autom Control 26:17–32

    Article  MATH  Google Scholar 

  26. Flores P, Ambrósio J (2010) On the contact detection for contact-impact analysis in multibody systems. Multibody Syst Dyn 24:255–280

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto von Estorff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koreck, J., von Estorff, O. Reduced order structural models for the calculation of wet contact forces due to impacts in hydraulic valves. Meccanica 50, 1387–1401 (2015). https://doi.org/10.1007/s11012-014-0097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0097-5

Keywords

Navigation