Skip to main content
Log in

The constrained buckling problem of geometrically imperfect beams: a mathematical approach for the determination of the critical instability points

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The constrained buckling problem of geometrically imperfect beams with intermediate unilateral supports is studied in the present paper. The proposed methodology offers the ability to calculate analytically the critical loads and the buckling shape of beams with arbitrary initial geometric imperfections, for a variety of different initial contact conditions in the framework of elastic stability theory. The proposed mathematical approach is based on the formulation of the equilibrium equations in the deformed position, in which the function of the unilateral constraints is appropriately taken into account. The analytical solution is obtained after the splitting of the initial constrained non-homogeneous boundary value problem (BVP) into constrained subproblems and the utilization of a classical mathematical theorem from the field of ordinary non-homogeneous BVPs. The implementation of the presented technique is demonstrated through characteristic examples. In order to validate the proposed mathematical method, the obtained results are compared with the respective numerical ones. The latter are obtained through the utilization of geometric nonlinear finite element analysis. The paper ends with the presentation of an investigation on the variation of the critical load with respect to different positions of the unilateral constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adan N, Shienman I, Altus E (1994) Post buckling behavior of beams under contact constraints. J Appl Mech –T ASME 61:764–772

    Article  Google Scholar 

  2. Holmes P, Domokos G, Schmitt J, Szeberényi (1999) Constrained Euler buckling: an interplay of computation and analysis. Compt Meth Appl Mech Eng 170:175–207

    Article  MATH  Google Scholar 

  3. Silveira R, Concálves P (2001) Analysis of slender structural elements under unilateral constraints. Struct Eng Mech 12:35–40

    Article  Google Scholar 

  4. Li J, Berger E (2003) A semi-analytical approach to the three dimensional normal contact problems with friction. Compt Mech 30:310–322

    Article  MATH  Google Scholar 

  5. Simo J, Wriggers P, Schweizerhof K, Taylor R (1986) Finite deformation post-buckling analysis involving inelasticity and contact constraints. Int J Numer Methods Eng 23:779–800

    Article  MATH  Google Scholar 

  6. Wriggers P, Imhof M (1993) On the treatment of nonlinear unilateral contact problems. Arch Appl Mech 63:116–129

    Article  MATH  Google Scholar 

  7. Wriggers P (2006) Computational contact mechanics. Springer, New York

    Book  MATH  Google Scholar 

  8. Fischer U, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244

    Article  MATH  Google Scholar 

  9. Ascione L, Grimaldi A (1984) Unilateral contact between a plate and an elastic foundation. Mecc 19:223–233

    Article  MATH  MathSciNet  Google Scholar 

  10. Koo J, Kwak B (1996) Post-buckling analysis with frictional contacts combining complementarity relations and an arc-length method. Int J Numer Methods Eng 39:1161–1180

    Article  MATH  Google Scholar 

  11. Hexiang L, Minghui F, Lark J, Williams F (1999) The calculation of critical buckling loads for externally constrained structures. Commun Numer Methods Eng 15:193–201

    Article  MATH  Google Scholar 

  12. Stein E, Wriggers P (1984) Stability of rods with unilateral constraints, a finite element solution. Comput Struct 19:205–211

    Article  MATH  Google Scholar 

  13. Shahwan K, Waas A (1994) A mechanical model for the buckling of unilaterally constrained rectangular plates. Int J Sol Struct 31:75–87

    Article  MATH  Google Scholar 

  14. Ma X, Butterworth J, Clifton C (2007) Compressive buckling analysis of plates in unilateral contact. Int J Sol Struct 44:2852–2862

    Article  MATH  Google Scholar 

  15. Stein E, Wagner W, Wriggers P (1990) Nonlinear stability analysis of shells and contact problems including branch switching. Comput Mech 5:428–446

    Article  MATH  Google Scholar 

  16. Björkman G (1992) Path following and critical points for contact problems. Comput Mech 10:231–246

    Article  MATH  MathSciNet  Google Scholar 

  17. Tschope H, Onate E, Wriggers P (2003) Direct computation of instability points for contact problems. Comput Mech 31:173–178

    Article  Google Scholar 

  18. Tschope H, Wriggers P, Onate E (2003) Direct computation of instability points with inequality constraints using the FEM for contact problems. Eng Comput 20:611–628

    Article  Google Scholar 

  19. Timoshenko SP, Gere JM (1960) Theory of elastic stability. McGraw-Hill, New York

    Google Scholar 

  20. Panagiotopoulos P (1985) Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhauser, Boston

    Book  MATH  Google Scholar 

  21. Rektorys K (1975) Variational methods in mathematics science and engineering. D Reidel Publishing Company, Boston

    MATH  Google Scholar 

  22. Boyce W, Di Prima R (2009) Elementary differential equations and boundary value problems. John Willey and Sons, Inc., Hoboken

    Google Scholar 

  23. Tzaros K (2011) The unilateral contact buckling problem of geometrically perfect and imperfect beams. Doctoral dissertation. University of Thessaly, Volos

  24. MSC Software Corporation, MSC Marc Volume a: theory and user information, Version 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euripidis Mistakidis.

Appendices

Appendix 1: The fundamental theorem for the solution of non-homogeneous BVPs

In the mathematical field of ordinary differential equations and Boundary Value Problems it is well known that the solution of non homogeneous BVPs is strongly connected with the solution of the corresponding homogeneous BVPs. More specifically, the solution of any non homogeneous BVP with ordinary differential equation can be obtained after the utilization of a mathematical theorem which can be found in any classical mathematical text book concerning differential equations and BVPs (see e.g. [20, 21]). In order to facilitate the reader, the latter is briefly presented here, in a form that is compatible to the formulation presented in Sect. 2.

Let us consider the general form of a non-homogeneous BVP [20, 21] constituted by the governing ordinary differential equation together with the boundary conditions:

$$ M(w) - \lambda N(w) = f(x) \ne 0 $$
(40)
$$ \begin{aligned} & a_{i,0} w(a) + b_{i,0} w(b) + a_{i,1} w^{\prime}(a) + b_{i,1} w^{\prime}(b) + \cdots + \\ \, &+ a_{i,2m - 1} w^{(2m - 1)} (a) + b_{i,2m - 1} w^{(2m - 1)} (b) = 0, \quad i = 1,2,3, \ldots ,2m \\ \end{aligned} $$
(41)

where, a, bare the boundaries of a closed interval [a, b], a i,o , b i,0,…. are real constants and M(w), N(w)are self-adjoint expressions with respect to the differential operators M, N having orders 2m and 2n respectively, with m > n.

The previous differential operators are defined in the domain D A which is a subset of the space of all continuous functions including their derivatives up to the order of 2 m in a closed region \( \bar{\varOmega } \). In Eqs. (40) and (41) \( f(x):{\mathbb{R}} \to {\mathbb{R}} \) describes the non-homogeneous term and w (2m−1)denotes the 2 m – 1 derivative of function w. Then, the following theorem concerns the solvability of the former non-homogeneous problem:

Theorem

Let a real number λ satisfying (41) be given. Then:

  • If this value λ is not an eigenvalue of the corresponding homogeneous problem (f(x) = 0), then the given non-homogeneous problem has exactly one solution for every arbitrary right-hand side function f(x).

  • If this value λ is an eigenvalue of the corresponding homogeneous problem, then the given non-homogeneous problem is in general not solvable. It is solvable (but not uniquely) if and only if the function f(x) is orthogonal to every function ϕ(x)corresponding to that λ, thus if the following equation holds for every such eigenfunction:

$$ (f,\phi ) = \int\limits_{a}^{b} {f(x)\phi (x)dx = 0} $$
(42)

Appendix 2: Formulas for the determination of the unknown coefficients in the case of uniquely solvable problems

The following formulas can be used for the calculation of the unknown coefficients in the case of uniquely solvable problems for each contact case of Table 1:

  • Contact Case CC1

    $$ B_{2} = \frac{{\Pi _{2} +\Pi _{3} +\Pi _{4} }}{{\Pi _{1} }} $$
    (43)
    $$ \begin{aligned} B_{2} &= B_{1} \left[ {{ \cos }\,kaL - \frac{a + b}{kabL}{ \sin }\,kaL} \right] - \frac{a + b}{kabL}\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi a \\ & \quad + B_{3} \frac{{{ \sin }\,kcL}}{kbL} - \frac{1}{kbL}\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi c( - 1)^{r} \\ \end{aligned} $$
    (44)
    $$ B_{3} = - B_{1}\Lambda _{1} +\Lambda _{2} +\Lambda _{3} $$
    (45)
    $$ C_{1} = \frac{{ - B_{1} { \sin }\,kaL - \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }r\pi a} }}{aL} $$
    (46)
    $$ C_{2} = \frac{{ - B_{3} { \sin }\,kcL + B_{1} { \sin }\,kaL + \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} + \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi c( - 1)^{r} } }}{bL} $$
    (47)
    $$ C_{3} = \frac{{ - B_{3} { \sin }\,kcL + \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi c( - 1)^{r} } }}{cL} $$
    (48)
    $$ A_{2} = B_{1} { \sin }\,kaL $$
    (49)
    $$ D_{2} = - B_{1} { \sin }\,kaL - \sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi a $$
    (50)

In the above relations the terms Π1, Π2, Π3, Π4 and Λ1, Λ2, Λ3 are given by the following relations:

$$ \Pi _{1} = - { \cos }[k(a + b)L] + \frac{a + b}{kabL}{ \sin }\,kaL\,{ \cos }\,kbl - \frac{{{ \sin }\,kaL}}{kbL} -\Lambda _{1} {\rm K} $$
(51)
$$ \Pi _{2} = -\Lambda _{2} {\rm K} $$
(52)
$$ \Pi _{3} = -\Lambda _{3} {\rm K} $$
(53)
$$ \begin{aligned}\Pi _{4} &= \frac{b + c}{kbcL}\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }(r\pi c)( - 1)^{r} + \frac{1}{kbL}\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi a - \\ &\quad - \frac{a + b}{kabL}{ \cos }\,kbL\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi a - \frac{{{ \cos }\,kbL}}{kbL}\sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }(r\pi c)( - 1)^{r} \\ \end{aligned} $$
(54)
$$ \Lambda _{1} = \frac{{{ \sin }[k(a + b)L] - \frac{a + b}{kabL}{ \sin }\,kaL{ \sin}\,kbL}}{{\frac{1}{kbL}{ \sin }\,kcL\,{ \sin }\,kbL - { \sin}\,kcL}} $$
(55)
$$ \Lambda _{2} = \frac{{\frac{a + b}{kabL}{ \sin }\,kbL\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{{\frac{1}{kbL}{ \sin }\,kcL\,{ \sin }\,kbL - { \sin }\,kcL}} $$
(56)
$$ \Lambda _{3} = \frac{{\frac{1}{kbL}\sin kbL\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} \sin \,(r\pi c)( - 1)^{r} } }}{{\frac{1}{kbL}\sin kcL\sin kbL - \sin kcL}} $$
(57)

where:

$$ {\rm K} = - { \cos }\,kcL + \frac{b + c}{kbcL}{ \sin}\,kcL - \frac{{{ \sin}\,kcL{ \cos }\,kbL}}{kbL} $$
(58)
  • Contact Case CC2

    $$ B_{1} = B_{2} = B_{3} = C_{1} = C_{2} = C_{3} = A_{2} = D_{2} = 0 $$
    (59)
    • Contact Case CC3

$$ B_{1} = \frac{{\left[ {\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin}\,r\pi a} } \right]\frac{{{ \sin }\,\left[ {k(b + c)L} \right]}}{ka(b + c)L}}}{{{ \sin }\,kL - \frac{{{ \sin }\,kaL\,{ \sin }\,\,\left[ {k(b + c)L} \right]}}{ka(b + c)L}}} $$
(60)
$$ B_{2} = B_{1} { \cos }\,kaL - \frac{{\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a + B_{1} { \sin }\,kaL} }}{ka(b + c)L} $$
(61)
$$ B_{3} = \frac{{\left[ {\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} } \right]\frac{{{ \sin }\,kaL}}{ka(b + c)L}}}{{{ \sin }\,kL - \frac{{{ \sin }\,kaL\,{ \sin }\left[ {k(b + c)L} \right]}}{ka(b + c)L}}} $$
(62)
$$ C_{1} = \frac{{ - B_{1} { \sin }\,kaL - \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{aL} $$
(63)
$$ C_{2} = \frac{{B_{1} { \sin }\,kaL + \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{(b + c)L} $$
(64)
$$ C_{3} = - C_{2} $$
(65)
$$ A_{2} = B_{1} { \sin }\,kaL $$
(66)
$$ D_{2} = - B_{1} { \sin }\,kaL - \sum\limits_{r = 1}^{n} {g_{r} } F_{r} { \sin }\,r\pi a $$
(67)
  • Contact Case CC4

    $$ B_{1} = \frac{{ - \left[ {\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi c( - 1)^{r} } } \right]\frac{{{ \sin }\,kcL}}{c(a + b)L}}}{{k\,{ \sin }\,kL - \frac{{{ \sin }\,kcL\,{ \sin }\left[ {k(a + b)L} \right]}}{c(a + b)L}}} $$
    (68)
    $$ B_{2} = B_{1} { \cos }\,kaL $$
    (69)
    $$ B_{3} = \frac{{ - \left[ {\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi c( - 1)^{r} } } \right]\frac{{{ \sin }[k(a + b)L]}}{c(a + b)L}}}{{k\,{ \sin }\,kL - \frac{{{ \sin }\,kcL\,{ \sin }\left[ {k(a + b)L} \right]}}{c(a + b)L}}} $$
    (70)
    $$ C_{1} = \frac{{\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi c( - 1)^{r} - B_{3} { \sin }\,kcL} }}{(a + b)L} $$
    (71)
    $$ C_{2} = C_{1} $$
    (72)
    $$ C_{3} = C_{1} \frac{a + b}{c} $$
    (73)
    $$ A_{2} = B_{1} { \sin }\,kaL $$
    (74)
    $$ D_{2} = C_{1} aL $$
    (75)
    • Contact Case CC5

$$ B_{1} = \frac{{\left[ {\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} } \right]z}}{{ka(b + c)L\left[ {{ \sin }(k(a + b)L + { \cos }\left[ {k(a + b)L} \right]} \right.{ \tan }\,kcL - \frac{{{ \sin }(kaL)z}}{ka(b + c)L}}} $$
(76)
$$ B_{2} = B_{1} { \cos }\,kaL + \frac{{C_{1} }}{k(b + c)} $$
(77)
$$ B_{3} = - B_{1} \frac{{{ \cos }\left[ {k(a + b)L} \right]}}{{{ \cos }kcL}} + \frac{{B_{1} { \sin }\,kaL + \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{k(b + c)aL}\frac{{{ \cos }\,kbL}}{{{ \cos }\,kcL}} $$
(78)
$$ C_{1} = \frac{{ - B_{1} { \sin }\,kaL - \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{aL} $$
(79)
$$ C_{2} = - C_{1} \frac{a}{b + c} $$
(80)
$$ C_{3} = - C_{2} $$
(81)
$$ A_{2} = B_{1} { \sin }\,kaL $$
(82)
$$ D_{2} = C_{1} aL $$
(83)

where:

$$ z = { \sin }\,kbL + { \cos }\,kbL\,{ \tan }\,kcL $$
(84)
  • Contact Case CC6

    $$ B_{1} = B_{2} = B_{3} = C_{1} = C_{2} = C_{3} = A_{2} = D_{2} = 0 $$
    (85)
  • Contact Case CC7

    $$ B_{1} = \frac{{\frac{{{ \sin }\left[ {kcL} \right]}}{caL}\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{{k\,{ \sin }\,kL - \frac{{{ \sin }\,kaL\,{ \sin }\,kcL}}{caL}}} $$
    (86)
    $$ B_{2} = B_{1} { \cos }\,kaL $$
    (87)
    $$ B_{3} = \frac{{\frac{{{ \sin }\left[ {k(a + b)L} \right]}}{caL}\sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{{k\,{ \sin }\,kL - \frac{{{ \sin }\,kaL\,{ \sin }\,kcL}}{caL}}} $$
    (88)
    $$ C_{1} = \frac{{ - B_{1} { \sin }\,kaL - \sum\nolimits_{r = 1}^{n} {g_{r} F_{r} { \sin }\,r\pi a} }}{aL} $$
    (89)
    $$ C_{2} = C_{1} $$
    (90)
    $$ C_{3} = C_{1} \frac{a + b}{c} $$
    (91)
    $$ A_{2} = B_{1} { \sin }\,kaL $$
    (92)
    $$ D_{2} = C_{1} aL $$
    (93)
  • Contact Case CC8

    $$ B_{1} = B_{2} = B_{3} = C_{1} = C_{2} = C_{3} = A_{2} = D_{2} = 0 $$
    (94)
  • Contact Case CC9

    $$ B_{1} = B_{2} = B_{3} = C_{1} = C_{2} = C_{3} = A_{2} = D_{2} = 0 $$
    (95)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzaros, K., Mistakidis, E. The constrained buckling problem of geometrically imperfect beams: a mathematical approach for the determination of the critical instability points. Meccanica 50, 1263–1284 (2015). https://doi.org/10.1007/s11012-014-0087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0087-7

Keywords

Navigation