Skip to main content
Log in

Damage dynamics, rate laws, and failure statistics via Hamilton’s principle

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We present a new model for studying the coupled-field nonlinear dynamics of systems with evolving distributed damage, focusing on the case of high-cycle fatigue. A 1D continuum model is developed using Hamilton’s principle together with Griffith energy arguments. It captures the interaction between a damage field variable, representing the density of microcracks, and macroscopic vibrational displacements. We use the perturbation method of averaging to show that the nonautonomous coupled-field model yields an autonomous Paris-Erdogan rate law as a limiting case. Finite element simulations reveal a brittle limit for which the life cycle dynamics is dominated by leading-order power-law behavior. Space-time failure statistics are explored using large ensembles of simulations starting from random initial conditions. We display typical probability distributions for failure locations and times, as well as “\(F{-}N\)” curves relating load to the number of cycles to failure. A universal time scale is identified for which the failure time statistics are independent of the applied load and the damage rate constant. We show that the evolution of the macro-displacement frequency response function, as well as the statistical variability of failure times, can vary substantially with changes in system parameters, both of which have significant implications for the design of failure diagnostic and prognostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For example, the coefficient \(\approx \) 0.84 for a uniform distribution with positive support, and 0.83, 0.97, and 0.99 for Weibull distributions with shape parameter 2, 6, and 10, respectively.

  2. The meaning of this “brittle dynamics” requirement, as well as its necessity, will be made more clear by the simulations of section 8.

  3. For our model system these are more natural to consider than the more commonly-seen “\(S\hbox {-}N\)” curves, and equivalent since the applied stress amplitude \(S\) is simply related to the end load by \(S=F/A\).

References

  1. Anderson TL (1995) Fracture mechanics: fundamentals and applications, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  2. Babaei H, Shahidi AR (2013) Free vibration analysis of quadrilateral nanoplates based on nonlocal continuum models using the Galerkin method: The effects of small scale. Meccanica 48(4):971–982

    Article  MATH  MathSciNet  Google Scholar 

  3. Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech (ASCE) 128(11):1119–1149

    Article  Google Scholar 

  4. Bažant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials. New directions in civil engineering. CRC Press, Boca Raton

    Google Scholar 

  5. Bedford A (1985) Hamilton’s principle in continuum mechanics, vol 139., Research notes in mathematicsPitman Publishing, London

    MATH  Google Scholar 

  6. Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32(1):163–194

    Article  Google Scholar 

  7. Bolotin VV (1999) Mechanics of fatigue. Mechanical Engineering. CRC Press, Boca Raton

    Google Scholar 

  8. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217220:77–95

    Article  ADS  MathSciNet  Google Scholar 

  9. Bowen RM (1989) Introduction to continuum mechanics for engineers. Plenum Press, New York

    Book  MATH  Google Scholar 

  10. Boyer H (1986) Atlas of fatigue curves. Number 06156G. American Society for Metals, Materials Park

    Google Scholar 

  11. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods, vol 15., Texts in applied mathematicsSpringer, New York

    MATH  Google Scholar 

  12. Budiansky B, O’Connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12(2):81–97

    Article  MATH  Google Scholar 

  13. Caiazzo AA, Costanzo F (2000) On the constitutive relations of materials with evolving microstructure due to microcracking. Int J Solids Struct 37:3375–3398

    Article  MATH  Google Scholar 

  14. Chelidze D, Cusumano J (2006) Phase space warping: nonlinear time-series analysis for slowly drifting systems. Philos Trans Royal Soc A 364(1846):2495–2513

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Chelidze D, Cusumano JP (2004) A dynamical systems approach to failure prognosis. J Vib Acoust 126(1):2–8

    Article  Google Scholar 

  16. Chelidze D, Cusumano JP, Chatterjee A (2002) A dynamical systems approach to damage evolution tracking, part 1: description and experimental application. J Vib Acoust 124(2):250–257

    Article  Google Scholar 

  17. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  18. Comi C (1999) Computational modelling of gradient-enhanced damage in quasi-brittle materials. Mech Cohesive-Frict Mater 4(1):17–36

    Article  Google Scholar 

  19. Cusumano J, Chelidze D (2005) Phase space warping. In: Rega G, Vestroni F (eds) IUTAM symposium on chaotic dynamics and control of systems and processes in mechanics, vol 122., Solid mechanics and its applicationsSpringer, Dordrecht, pp 183–192

    Chapter  Google Scholar 

  20. Cusumano JP, Chatterjee A (2000) Steps towards a qualitative dynamics of damage evolution. Int J Solids Struct 37:6397–6417

    Article  MATH  MathSciNet  Google Scholar 

  21. Cusumano JP, Li Q (2010) Coupled field damage dynamics via hamilton’s principle. ASME Conf Proc 2010(44137):771–776

    Google Scholar 

  22. Dym CL, Shames IH (1973) Solid mechanics: a variational approach. McGraw-Hill Book Company, New York

    Google Scholar 

  23. Fatemi J, Van Keulen F, Onck P (2002) Generalized continuum theories: Application to stress analysis in bone. Meccanica 37(4—-5):385–396 [15th Congress of AIMETA, Sicily, Sep 26–29]

    Article  MATH  MathSciNet  Google Scholar 

  24. Flugge W (1975) Viscoelasticity. Springer, Berlin

    Book  Google Scholar 

  25. Fried E, Gurtin ME (1993) Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68(3–4):326–343

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Fried E, Gurtin ME (1994) Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72(4):287–308

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Frost NE, Marsh KJ, Pook LP (1999) Metal fatigue. Dover Publications, Mineola

    Google Scholar 

  28. Ginsberg JH (2001) Mechanical and structural vibrations. John Wiley & Sons, New York

    Google Scholar 

  29. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans Royal Soc Lond A221:163–197

    Article  ADS  Google Scholar 

  30. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, Waltham

    MATH  Google Scholar 

  31. Henann DL, Kamrin K (2013) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci 110(17):6730–6735

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    Google Scholar 

  33. Irwin GR (1961) Plastic zone near a crack and fracture toughness. In: 7th Sagamore Ordnance Materials Conference, vol IV. Syracuse University, pp 63–78

  34. Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dortrecht

    Book  MATH  Google Scholar 

  35. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Article  ADS  Google Scholar 

  36. Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24):245510

    Article  ADS  Google Scholar 

  37. Kasaba K, Takahiro Sano SK (1998) Fatigue crack growth under compressive loading. J Nucl Mater 1059–2603:2059–2063

    Article  Google Scholar 

  38. Krajcinovic D (1996) Damage mechanics. North-Holland series in applied mathematics and mechanics. Elsevier, Amsterdam

    Google Scholar 

  39. Lanczos C (1986) The variational principles of mechanics. Dover Publications, Mineola

    MATH  Google Scholar 

  40. Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Lorentz E, Godard V (2011) Gradient damage models: toward full-scale computations. Comput Methods Appl Mech Eng 200(21–22):1927–1944

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Matthies HG, Brenner CE, Bucher CG, Soares CG (1997) Uncertainties in probabilistic numerical analysis of structures and solids–stochastic finite elements. Struct Saf 19:283–336

    Article  Google Scholar 

  43. Meirovitch L (1970) Methods Anal Dyn. McGraw-Hill, New York

    Google Scholar 

  44. Meirovitch L (1997) Principles and techniques of vibrations. Prentice Hall, Upper Saddle River

    Google Scholar 

  45. Murdock JA (1991) Perturbations: theory and methods. John Wiley & Sons, New York

    MATH  Google Scholar 

  46. Orowan E (1955) Energy criteria of fracture. Weld J 34(3):157–160

    Google Scholar 

  47. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534

    Article  Google Scholar 

  48. Patil N, Mahadevan P, Chatterjee A (2008) A constructive empirical theory for metal fatigue under block cyclic loading. Proc Royal Soc Lond Ser A 464:1161–1179

    Article  ADS  Google Scholar 

  49. Peerlings R, Brekelmans W, de Borst R, Geers M (2000) Gradient-enhanced damage modelling of high-cycle fatigue. Int J Numer Methods Eng 49(12):1547–1569

    Article  MATH  Google Scholar 

  50. Pitt JS (2009) A Brittle Damage Model in Thermoelastodynamics. PhD thesis, Penn State University

  51. Pitt JS, Costanzo F (2009) An adaptive h-refinement algorithm for local damage models. Algorithms 2(4):1281–1300

    Article  MathSciNet  Google Scholar 

  52. Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38(42–43):7359–7380

    Article  MATH  MathSciNet  Google Scholar 

  53. Rabinowicz E (1995) Friction and wear in materials, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  54. Reid CN, Moffatt J, Hermann R (1988) Fatigue under compressive loading and residual stressesk. Scr Metall 22:1743–1748

    Article  Google Scholar 

  55. Rothbart HA (ed) (1996) Mechanical design handbook. McGraw-Hill, New York

    Google Scholar 

  56. Royden HL (1968) Real analysis, 2nd edn. Macmillan Publishing Company Inc, New York

    Google Scholar 

  57. Sanders JA, Verhulst F, Murdock J (2007) Averaging Methods in nonlinear dynamical systems, vol 59., Applied mathematical sciencesSpringer, New York

    MATH  Google Scholar 

  58. Schijve J (1994) Fatigue predictions and scatter. Fatigue Fract Eng Mater Struct 17(4):381–396

    Article  Google Scholar 

  59. Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44:191–204

    Article  ADS  MathSciNet  Google Scholar 

  60. Sicsic P, Marigo J-J (2013) From gradient damage laws to griffith’s theory of crack propagation. J Elast 113(1):55–74

    Article  MATH  MathSciNet  Google Scholar 

  61. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley

  62. Suresh S (2006) Fatigue of materials, 2nd edn., Solid state science seriesCambridge University Press, Cambridge

    Google Scholar 

  63. Tamarin Y (2002) Atlas of stress-strain curves. Number 06825G. ASM International, Materials Park

    Google Scholar 

  64. Taylor D (1999) Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue 21(5):413–420

    Article  ADS  Google Scholar 

  65. Verhulst F (1990) Averaging methods in nonlinear dynamical systems. Springer, Berlin

    Google Scholar 

  66. Vignollet J, May S, de Borst R, Verhoosel CV (2014) Phase-field models for brittle and cohesive fracture. Meccanica, 1–15

  67. Woo CW, Li DL (1993) A universal physically consistent definition of material damage. Int J Solids Struct 30:2097–2108

    Article  MATH  Google Scholar 

  68. Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 71:195404

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from Siemens Corporation. The authors would like to thank Dr. Jonathan Pitt for helpful discussions regarding the numerical implementation of our model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Cusumano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cusumano, J.P., Roy, A. & Li, Q. Damage dynamics, rate laws, and failure statistics via Hamilton’s principle. Meccanica 50, 77–98 (2015). https://doi.org/10.1007/s11012-014-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0055-2

Keywords

Navigation