Skip to main content
Log in

Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In recent years, functionally graded material (FGM) has been widely explored in coating technology amongst both academic and industry communities. FGM coatings are suitable substitutes for many typical conventional coatings which are susceptible to cracking, debonding and eventual functional failure due to the mismatch of material properties at the coating/substrate interface. In this study, a thick spherical pressure vessel with an inner FGM coating subjected to internal and external hydrostatic pressure is analyzed within the context of three-dimensional elasticity theory. Young’s modulus of the coating is assumed to vary linearly or exponentially through the thickness, while Poisson’s ratio is considered as constant. A comparative numerical study of FGM versus homogeneous coating is conducted for the case of vessel under internal pressure, and the dependence of stress and displacement fields on the type of coating is examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koizumi M (1993) The concept of FGM. Ceramic Trans 34:3–10

    Google Scholar 

  2. Lutz MP, Zimmerman RW (1996) Thermal stresses and effective thermal expansion coefficients of a functionally graded sphere. J Therm Stresses 19:39–54

    Article  MathSciNet  Google Scholar 

  3. Sburlati R, Atashiopur SR, Hosseini-Hashemi S (2013) Study on the effect of functionally graded coating layers on elastic deformation of thick circular plates: a closed-form elasticity solution. Compos Struct 99:131–140

    Article  Google Scholar 

  4. Afshar R, Bayat M, Lalwani RK, Yau YH (2011) Elastic behavior of glass-like functionally graded infinite hollow cylinder under hydrostatic loads using finite element method. Mater Des 32:781–787

    Article  Google Scholar 

  5. Ashrafi H, Asemi K, Shariyat M, Salehi M (2013) Two-dimensional modeling of heterogeneous structures using graded finite element and boundary element methods. Meccanica 48:663–680

    Article  MathSciNet  Google Scholar 

  6. Fan J, Zhang J, Wang Z, Li Z, Zhao L (2013) Dynamic crushing behavior of random and functionally graded metal hollow sphere foams. Mater Sci Eng, A 561:352–361

    Article  Google Scholar 

  7. Heydarpour Y, Malekzadeh P, Aghdam MM (2013) Free vibration of functionally graded truncated conical shells under internal pressure. Meccanica 1–16

  8. Jha DK, Kant T, Singh RK (2013) A critical review of recent research on functionally graded plates. Compos Struct 96:833–849

    Article  Google Scholar 

  9. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN et al (2013) Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Eur J Mech A Solids 37:24–34

    Article  MathSciNet  Google Scholar 

  10. Tutuncu N, Ozturk M (2001) Exact solutions for stresses in functionally graded pressure vessels. Composites Part B: Eng 32:683–686

    Article  Google Scholar 

  11. Eslami MR, Babaei MH, Poultangari R (2005) Thermal and mechanical stresses in a functionally graded thick sphere. Int J Press Vessels Pip 82:522–527

    Article  Google Scholar 

  12. You LH, Zhang JJ, You XY (2005) Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int J Press Vessels Pip 82:347–354

    Article  Google Scholar 

  13. Poultangari R, Jabbari M, Eslami MR (2008) Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. Int J Press Vessels Pip 85:295–305

    Article  Google Scholar 

  14. Chen YZ, Lin XY (2008) Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Comput Mater Sci 44:581–587

    Article  Google Scholar 

  15. Tutuncu N, Temel B (2009) A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Compos Struct 91:385–390

    Article  Google Scholar 

  16. Saidi AR, Atashipour SR, Jomehzadeh E (2009) Exact elasticity solutions for thick-walled fg spherical pressure vessels with linearly and exponentially varying properties. Int J Eng Trans A 22:405–416

    Google Scholar 

  17. Sadeghian M, Toussi HE (2011) Axisymmetric yielding of functionally graded spherical vessel under thermo-mechanical loading. Comput Mater Sci 50:975–981

    Article  Google Scholar 

  18. Shahsiah R, Eslami MR, Sabzikar Boroujerdy M (2011) Thermal instability of functionally graded deep spherical shell. Archive of Applied Mechanics 81:1455–1471

    Article  MATH  ADS  Google Scholar 

  19. Carrera E, Soave M (2011) Use of functionally graded material layers in a two-layered pressure vessel. J Pressure Vessel Technol, Trans ASME 133

  20. Bayat Y, Ghannad M, Torabi H (2012) Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading. Arch Appl Mech 82:229–242

    Article  MATH  Google Scholar 

  21. Sburlati R (2012) Analytical elastic solutions for pressurized hollow cylinders with internal functionally graded coatings. Compos Struct 94:3592–3600

    Article  Google Scholar 

  22. Nejad MZ, Abedi M, Lotfian MH, Ghannad M (2012) An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties. J Mech Sci Technol 26:4081–4087

    Article  Google Scholar 

  23. Sabzikar Boroujerdy M, Eslami MR (2013) Thermal buckling of piezo-FGM shallow spherical shells. Meccanica 48:887–899

    Article  MathSciNet  MATH  Google Scholar 

  24. Jabbari M, Karampour S, Eslami MR (2013) Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica 48:699–719

    Article  MathSciNet  MATH  Google Scholar 

  25. Saadatfar M, Aghaie-Khafri M (2014) Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation. Smart Mater Struct 23:035004

    Article  ADS  Google Scholar 

  26. Watanabe Y, Inaguma Y, Sato H, Miura-Fujiwara E (2009) A novel fabrication method for functionally graded materials under centrifugal force: the centrifugal mixed-powder method. Materials 2:2510–2525

    Article  ADS  Google Scholar 

  27. Timoshenko SP, Goodier JN (1970) Theory of elasticity. McGraw Hill Higher Education, New York

    MATH  Google Scholar 

  28. Abramowitz M, Stegun IA (1970) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications Inc., New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Education, University and Research (MIUR). Project No. 2009XWLFKW: “Multi-scale modeling of materials and structures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sburlati.

Appendix

Appendix

Components of coefficients matrices in Eqs. (2428):

HMV/HMC (n = 1):

$$ {\mathcal{A}}_{1}^{1} = \frac{{2\left( {1 + \nu } \right)}}{{\left( {1 - 2\nu } \right)}}G_{o} , \quad {\mathcal{A}}_{2}^{1} = - 4\frac{{G_{o} }}{{R_{o}^{3} }} $$
$$ {\mathcal{B}}_{1}^{1} = {\mathcal{A}}_{1}^{1} \left( {\frac{G}{{G_{o} }}} \right) ,\quad {\mathcal{B}}_{2}^{1} = {\mathcal{A}}_{2}^{1} \frac{G}{{G_{o} }}\left( {\frac{{R_{i} }}{{R_{o} }}} \right)^{3} $$
$$ {\mathcal{C}}_{1}^{1} = R_{c} , \quad {\mathcal{C}}_{2}^{1} = \frac{1}{{R_{c}^{2} }},\quad {\mathcal{C}}_{3}^{1} = - R_{c} ,\quad {\mathcal{C}}_{4}^{1} = - \frac{1}{{R_{c}^{2} }} $$
$$ {\mathcal{D}}_{1}^{1} = {\mathcal{A}}_{1}^{1} ,\quad {\mathcal{D}}_{2}^{1} = {\mathcal{A}}_{2}^{1} \left( {\frac{{R_{o} }}{{R_{c} }}} \right)^{3} ,\quad {\mathcal{D}}_{3}^{1} = - {\mathcal{A}}_{1}^{1} \left( {\frac{G}{{G_{o} }}} \right),\quad {\mathcal{D}}_{4}^{1} = - {\mathcal{A}}_{2}^{1} \left( {\frac{G}{{G_{o} }}} \right)\left( {\frac{{R_{o} }}{{R_{c} }}} \right)^{3} $$

HMV/L-FGC (n = 2):

$$ {\mathcal{A}}_{1}^{2} = \frac{{2\left( {1 + \nu } \right)}}{{\left( {1 - 2\nu } \right)}}G_{o} ,\quad {\mathcal{A}}_{2}^{2} = - 4\frac{{G_{o} }}{{R_{o}^{3} }} $$
$$ {\mathcal{B}}_{1}^{2} = - \frac{{2\left( {A + B \cdot R_{i} } \right)\left( {1 - \nu } \right)}}{{\left( {1 - 2\nu } \right)R_{i}^{2 + N} }}\left[ { f_{1} \left( {R_{i} } \right) + \left( {\left( {1 + N} \right) - \frac{2\nu }{{\left( {1 - \nu } \right)}}} \right)f_{3} \left( {R_{i} } \right) } \right] $$
$$ {\mathcal{B}}_{2}^{2} = - \frac{{2\left( {A + B \cdot R_{i} } \right)\left( {1 - \nu } \right)}}{{\left( {1 - 2\nu } \right)R_{i}^{2 - N} }}\left[ { f_{2} \left( {R_{i} } \right) + \left( {\left( {1 - N} \right) - \frac{2\nu }{{\left( {1 - \nu } \right)}}} \right)f_{4} \left( {R_{i} } \right) } \right] $$
$$ {\mathcal{C}}_{1}^{2} = R_{c} ,\quad {\mathcal{C}}_{2}^{2} = \frac{1}{{R_{c}^{2} }},\quad {\mathcal{C}}_{3}^{2} = - \frac{1}{{R_{c}^{1 + N} }}f_{3} \left( {R_{c} } \right),\quad {\mathcal{C}}_{4}^{2} = - \frac{1}{{R_{c}^{1 - N} }}f_{4} \left( {R_{c} } \right) $$
$$ {\mathcal{D}}_{1}^{2} = \frac{{2G_{o} \left( {1 + \nu } \right)}}{{\left( {1 - 2\nu } \right)}},\quad {\mathcal{D}}_{2}^{2} = - \frac{{4G_{o} }}{{R_{c}^{3} }} $$
$$ {\mathcal{D}}_{3}^{2} = \frac{{2\left( {A + B \cdot R_{c} } \right)\left( {1 - \nu } \right)}}{{\left( {1 - 2\nu } \right)R_{c}^{2 + N} }}\left[ { \left( {1 - N} \right)\left( {2 + N} \right)f_{1} \left( {R_{c} } \right) + \left( {\left( {1 + N} \right) - \frac{2\nu }{{\left( {1 - \nu } \right)}}} \right)f_{3} \left( {R_{c} } \right) } \right] $$
$$ {\mathcal{D}}_{4}^{2} = \frac{{2\left( {A + B \cdot R_{c} } \right)\left( {1 - \nu } \right)}}{{\left( {1 - 2\nu } \right)R_{c}^{2 - N} }}\left[ { \left( {1 + N} \right)\left( {2 - N} \right)f_{2} \left( {R_{c} } \right) + \left( {\left( {1 - N} \right) - \frac{2\nu }{{\left( {1 - \nu } \right)}}} \right)f_{4} \left( {R_{c} } \right) } \right] $$

HMV/E-FGC (n = 3):

$$ {\mathcal{A}}_{1}^{3} = \frac{{2\left( {1 + \nu } \right)}}{1 - 2\nu }G_{o} ,\quad {\mathcal{A}}_{2}^{3} = - 4\frac{{G_{o} }}{{R_{o}^{3} }} $$
$$ {\mathcal{B}}_{1}^{3} = \frac{{2\alpha \cdot e^{{\left( {\frac{\beta }{{2R_{i} }}} \right)}} }}{{\left( {1 - 2\nu } \right)R_{i}^{2} }}\left[ {\left( {1 + \nu } \right)g_{1} \left( {R_{i} } \right) - \nu g_{2} \left( {R_{i} } \right)} \right] $$
$$ {\mathcal{B}}_{2}^{3} = \frac{{2\alpha \cdot e^{{\left( {\frac{\beta }{{2R_{i} }}} \right)}} }}{{\left( {1 - 2\nu } \right)R_{i}^{2} }}\left[ { - \left( {1 - \nu } \right)g_{3} \left( {R_{i} } \right) - \nu g_{4} \left( {R_{i} } \right)} \right] $$
$$ {\mathcal{C}}_{1}^{3} = R_{c} ,\quad {\mathcal{C}}_{2}^{3} = \frac{1}{{R_{c}^{2} }},\quad {\mathcal{C}}_{3}^{3} = - \frac{{e^{{ - \frac{\beta }{{2R_{c} }}}} }}{{R_{c} }}g_{2} \left( {R_{c} } \right),\quad {\mathcal{C}}_{4}^{3} = - \frac{{e^{{ - \frac{\beta }{{2R_{c} }}}} }}{{R_{c} }}g_{4} \left( {R_{c} } \right) $$
$$ {\mathcal{D}}_{1}^{3} = \frac{{2G_{o} \left( {1 + \nu } \right)}}{{\left( {1 - 2\nu } \right)}}, \quad {\mathcal{D}}_{2}^{3} = - \frac{{4G_{o} }}{{R_{c}^{3} }} $$
$$ {\mathcal{D}}_{3}^{3} = \frac{{2\alpha \cdot e^{{\left( {\frac{\beta }{{2R_{c} }}} \right)}} }}{{\left( {1 - 2\nu } \right)R_{c}^{2} }}\left[ {\left( {1 + \nu } \right)g_{1} \left( {R_{c} } \right) - \nu g_{2} \left( {R_{c} } \right)} \right] $$
$$ {\mathcal{D}}_{4}^{3} = \frac{{2\alpha \cdot e^{{\left( {\frac{\beta }{{2R_{c} }}} \right)}} }}{{\left( {1 - 2\nu } \right)R_{c}^{2} }}\left[ { - \left( {1 - \nu } \right)g_{1} \left( {R_{c} } \right) - \nu g_{2} \left( {R_{c} } \right)} \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atashipour, S.A., Sburlati, R. & Atashipour, S.R. Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials. Meccanica 49, 2965–2978 (2014). https://doi.org/10.1007/s11012-014-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0047-2

Keywords

Navigation