Skip to main content
Log in

Phenomenological and numerical modelling of short fibre reinforced cementitious composites

  • Nonlinear Dynamics and Control of Composites for Smart Engi design
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a constitutive model for short fibre reinforced cementitious composites will be presented. This model is based on the St. Venant–Kirchhoff model, which is a special case of a hyperelastic material. This model is refined to include the fibre orientation distribution. Numerical FEM simulations with the developed constitutive model and fracture simulations using the discrete element method are presented. The outcomes of these numerical methods demonstrate how important it is to monitor and further to control the fibre orientation distribution during the manufacturing process. As the manufacturing process might involve casting, as, e.g., in the case of steel fibre reinforced concrete, an outlook on simulations of the manufacturing process in order to predict and to control the fibre orientation distribution is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Advani SG, Tucker CL III (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784. doi:10.1122/1.549945

    Article  ADS  Google Scholar 

  2. Alberty J, Carstensen C, Funken SA (1999) Remarks around 50 lines of matlab: short finite element implementation. Num Alg 20(2–3):117–137. doi:10.1023/A:1019155918070

    MATH  MathSciNet  Google Scholar 

  3. Alberty J, Carstensen C, Funken SA, Klose R (2002) Matlab implementation of the finite element method in elasticity. Computing 69(3):239–263. doi:10.1007/s00607-002-1459-8

    Article  MATH  MathSciNet  Google Scholar 

  4. Altenbach H, Naumenko K, L’vov G, Pilipenko SN (2003) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech Compos Mater 39(3):221–234. doi:10.1023/A:1024566026411

    Article  Google Scholar 

  5. Banfill P (2003) The rheology of fresh cement and concrete: a review. In: Proc 11th International Cement Chemistry Congress, Durban

  6. Banfill P (2006) Rheology of fresh cement and concrete. Rheol Rev 18:61–130

    Google Scholar 

  7. Bertolini Cestari C, Invernizzi S, Marzi T, Tulliani JM (2013) The reinforcement of ancient timber-joints with carbon nano-composites. Meccanica. doi:10.1007/s11012-013-9735-6

  8. Bi C, Takahashi S, Fujishiro I (2012) Degeneracy-aware interpolation of 3d diffusion tensor fields. In: Proc. SPIE 8294, Visualization and Data Analysis 2012. doi:10.1117/12.908117

  9. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24(9):1664–1671. doi:10.1016/j.conbuildmat.2010.02.025

    Article  Google Scholar 

  10. Bronstein IN, Semendjajew KA, Musiol G, Muehlig H (2007) Handbook of mathematics, 5th edn. Springer, New York

    Google Scholar 

  11. Carlsson A (2007) Orientation of fibres in suspensions flowing over a solid surface. Tech. rep, Royal Institute of Technology, KTH Mechanics

  12. Chung ST, Kwon TH (1995) Numerical simulation of fiber orientation in injection molding of short-fiber-reinforced thermoplastics. Polym Eng Sci 35(7):604–618. doi:10.1002/pen.760350707

    Article  Google Scholar 

  13. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72. doi:10.1088/0508-3443/3/3/302

    Article  ADS  Google Scholar 

  14. Dou HS, Khoo B, Phan-Thien N, Yeo K, Zheng R (2007) Simulations of fibre orientation in dilute suspensions with front moving in the filling process of a rectangular channel using level-set method. Rheol Acta 46(4):427–447. doi:10.1007/s00397-006-0134-y

    Article  Google Scholar 

  15. Ehrentraut H, Muschik W (1998) On symmetric irreducible tensors in d-dimensions. ARI 51(2):149–159. doi:10.1007/s007770050048

    Article  Google Scholar 

  16. Eik M, Lõhmus K, Tigasson M, Listak M, Puttonen J, Herrmann H (2013) DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J Mater Sci 48(10):3745–3759. doi:10.1007/s10853-013-7174-3

    Article  ADS  Google Scholar 

  17. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52(4):309–329. doi:10.1007/BF00936835

    Article  Google Scholar 

  18. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241(1226):376–396. doi:10.1098/rspa.1957.0133

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Ferraris C, de Larrard F, Martys N (2006) Materials Science of Concrete VI, chap. Fresh concrete rheology: recent developments. The National Institute of Standards and Technology (NIST), pp 215–241

  20. Ferraris CF, de Larrard F (1998) Testing and modelling of fresh concrete rheology. Tech. Rep., NIST

  21. Gkikas G, Paipetis A (2014) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica, pp 1–18. doi:10.1007/s11012-014-9915-z

  22. Gödde L, Strack M, Mark P (2010) Bauteile aus Stahlfaserbeton und stahlfaserverstärktem Stahlbeton. Beton- und Stahlbetonbau 105(2):78–91. doi:10.1002/best.200900067

    Article  Google Scholar 

  23. Gram A (2009) Numerical modelling of self-compacting concrete flow. Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm

  24. Gram A, Silfwerbrand J (2010) Simulation of fresh concrete channel flow: evaluation of rheological parameters. In: 8th fib Ph.D.

  25. Gram A, Silfwerbrand J (2011) Numerical simulation of fresh scc flow: applications. Mater Struct 44(4):805–813. doi:10.1617/s11527-010-9666-9

    Article  Google Scholar 

  26. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft. http://repository.tudelft.nl/view/ir/uuid:07a817aa-cba1-4c93-bbed-40a5645cf0f1/. Accessed 25 April 2014

  27. Guo Y, Wassgren C, Ketterhagen W, Hancock B, James B, Curtis J (2012) A numerical study of granular shear flows of rod-like particles using the discrete element method. J Fluid Mech 713:1–26. doi:10.1017/jfm.2012.423

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Harris SM (2007) Dynamics of semi-flexible fibres in viscous flow. Ph.D. thesis, The University of Leeds, Department of Applied Mathematics

  29. Helbig K, Thomsen L (2005) 75-Plus years of anisotropy in exploration and reservoir seismics: a historical review of concepts and methods. Geophysics 70(6):9ND–23ND. doi:10.1190/1.2122407

    Article  ADS  Google Scholar 

  30. Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190(22–23):2753–2770. doi:10.1016/S0045-7825(00)00263-2

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Invernizzi S, Lacidogna G, Carpinteri A (2013) Particle-based numerical modeling of ae statistics in disordered materials. Meccanica 48(1):211–220. doi:10.1007/s11012-012-9595-5

    Article  Google Scholar 

  32. Jankun-Kelly TJ, Mehta K (2006) Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. In: IEEE Transactions on Visualization and Computer Graphics, Proceedings Visualization/Information Visualization 2006, pp 1197–1204. doi:10.1109/TVCG.2006.181

  33. Jerier JF, Donzé FV, Imbault D, Doremus P (2008) A geometric algorithm for discrete element method to generate composite materials. In: Donzé FV (ed) Discrete element group for Hazard mitigation, Annual Report #4, February 2008. http://people.3srgrenoble.fr/users/fdonze/articles/GED_2007/Rapport_GED_2007_web.pdf. Accessed 25 April 2014

  34. Kononova O, Krasnikovs A, Lapsa V, Kalinka J, Galushchak A (2011) Internal structure formation in high strength fiber concrete during casting. World Acad Sci Eng Technol 78:1864–1867

    Google Scholar 

  35. Krasnikovs A, Zaharevskis V, Kononova O, Lusis V, Galushchak A, Zaleskis E (2012) Fiber concrete properties control by fibers motion investigation in fresh concrete during casting. In: 8th International DAAAM Baltic Conference ”INDUSTRIAL ENGINEERING” 19–21 April 2012, Tallinn, Estonia

  36. Lin J, Zhang Q, Zhang K (2010) Rheological properties of fiber suspensions flowing through a curved expansion duct. Polym Eng Sci 50(10):1994–2003. doi:10.1002/pen.21725

    Article  Google Scholar 

  37. Lü N, Cheng Y, Li X, Cheng J (2012) An asymmetrical dynamic model for bridging fiber pull-out of unidirectional composite materials. Meccanica 47(5):1247–1260. doi:10.1007/s11012-011-9509-y

    Article  MathSciNet  Google Scholar 

  38. Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40:226–234. doi:10.1016/j.cemconres.2009.08.032

    Article  Google Scholar 

  39. McLeod MA (1997) Injection molding of pregenerated microcomposites. Ph.D. thesis, Virginia Polytechnic Institute and State University http://scholar.lib.vt.edu/theses/available/etd-0898-145634/. Accessed 25 April 2014

  40. Mehrabadi MM, Cowin SC (1990) Eigentensors of linear anisotropic elastic materials. Quart J Mech Appl Math 43(1):15–41 doi:10.1093/qjmam/43.1.15

  41. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574. doi:10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  42. Mukhopadhyay AK, Jang S (2008) Using cement paste rheology to predict concrete mix design problems: Technical Report, Texas Transportation Institute

  43. Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of continuum thermodynamics. Kielce University of Technology, Berlin

    Google Scholar 

  44. Nabialek J (2011) Modeling of fiber orientation during injection molding process of polymer composites. Kompozyzy 11(4):347–351

    Google Scholar 

  45. Neophytou M, Pourgouri S, Kanellopoulos A, Petrou M, Ioannou I, Georgiou G, Alexandrou A (2010) Determination of the rheological parameters of self-compacting concrete matrix using slump flow test. Appl Rheol 20:12 doi:10.3933/ApplRheol-20-62402

  46. Niceno B Easymesh: a two-dimensional quality mesh generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh/ Version 1.4. Accessed 25 April 2014

  47. Pardowitz I, Hess S (1980) On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors. Phys A 100(3):540–562. doi:10.1016/0378-4371(80)90166-1

    Article  Google Scholar 

  48. Park JM, Park SJ (2011) Modeling and simulation of fiber orientation in injection molding of polymer composites. Math Problems Eng. doi:10.1155/2011/105637

  49. Radtke F (2012) Computational modelling of fibre-reinforced cementitious composites: An analysis of discrete and mesh-independent techniques. Ph.D. thesis, Technische Universiteit Delft

  50. Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39(4):501–509. doi:10.1617/s11527-005-9035-2

    Article  Google Scholar 

  51. Schnell J, Schladitz K, Schuler F (2010) Richtungsanalyse von Fasern in Betonen auf Basis der Computer-Tomographie. Beton- und Stahlbetonbau 105(2):72–77. doi:10.1002/best.200900055

    Article  Google Scholar 

  52. Schöberl J, Gerstmayr J, Gaisbauer R (2003) NETGEN - automatic 3d tetrahedral mesh generator http://www.hpfem.jku.at/netgen/. Accessed 25 April 2014

  53. Steuer H (2004) Thermodynamical properties of a model liquid crystal. Ph.D. thesis, TU Berlin http://opus.kobv.de/tuberlin/volltexte/2004/919/. Accessed 25 April 2014

  54. Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J Mater Sci 48(3):1358–1367. doi:10.1007/s10853-012-6882-4

    Article  ADS  Google Scholar 

  55. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333. doi:10.1002/pc.750050413

    Article  Google Scholar 

  56. Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete, vol 3, 1st edn. Springer, New York

    Book  Google Scholar 

  57. Vélez-García GM (2012) Experimental evaluation and simulations of fiber orientation in injection molding of polymers containing short glass fibers. Ph.D. thesis, Virginia Polytechnic Institute and State University. http://scholar.lib.vt.edu/theses/available/etd-04262012-100846/unrestricted/Velez_Garcia_GM_2012.pdf. Accessed 25 April 2014

  58. VerWeyst BE, Tucker CL III, Foss PH, O’Gara JF (1999) Fiber orientation in 3-d injection molded features: prediction and experiment. Int Polym Proc 14(4):409–420

  59. Waldmann L (1960) Diffusionstheorie für polarisierte teilchen. Z Naturforsch A 15a:19–30

  60. Waldmann L (1963) Kinetische theorie des lorentz-gases aus rotierenden molekülen. Z Naturforsch A 18a:1033–1048

  61. Weatherley D (2009) ESyS-Particle v2.0 user’s guide. Earth Systems Science Computational Centre (ESSCC), The University of Queensland. Edited by Dion Weatherley and V. E. Boros

  62. Weatherley D, Boros V, Hancock W, Abe S (2010) Scaling benchmark of esys-particle for elastic wave propagation simulations. In: IEEE Sixth International Conference on e-Science (e-Science), pp 277–283. doi:10.1109/eScience.2010.40

  63. Wong GS, Alexander AM, Haskins R, Poole TS, Malone PG, Wakeley L (2001) Portland-cement concrete rheology and workability: final report. Tech. rep, Federal Highway Administration

  64. Yahia A, Khayat K (2003) Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater Struct 36(6):402–412. doi:10.1007/BF02481066

    Article  Google Scholar 

  65. Yasuda K, Kyuto T, Mori N (2004) An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder. Rheol Acta 43(2):137–145. doi:10.1007/s00397-003-0328-5

    Article  Google Scholar 

  66. Yilmaz S (2013) An approach for prediction of the elasto-plastic behavior of particulate reinforced composites. Meccanica, pp 1–9. doi:10.1007/s11012-013-9744-5

  67. Zevnik L, Jereb V (2013) Rheology of fresh concrete—influence of superplasticizers. Presentation, Regensburg

    Google Scholar 

  68. Zhang Q, Lin J (2010) Orientation distribution and rheological properties of fiber suspensions flowing through curved expansion and rotating ducts. J Hydrodyn Ser B 22(5, Supplement 1):920–925. doi:10.1016/S1001-6058(10)60053-4

Download references

Acknowledgments

Supported by “The Doctoral Programme of the Built Environment” (RYM-TO) funded through the Academy of Finland and the Ministry of Education and the Estonian Ministry of Education and Research is gratefully acknowledged. Compiled with the assistance of the Tiger University Program of the Estonian Information Technology Foundation (VisPar system, EITSA Grants 10-03-00-24, 12-03-00-11 and 13030009). This research was supported by the European Union through the European Regional Development Fund, in particular through funding for the “Centre for Nonlinear Studies” as an Estonian national centre of excellence. Support by the German Academic Exchange Service in form of a DAAD-RISE Fellowship for V.B. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, H., Eik, M., Berg, V. et al. Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica 49, 1985–2000 (2014). https://doi.org/10.1007/s11012-014-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0001-3

Keywords

Navigation