Skip to main content
Log in

Constitutive model for plastic deformation of nanocrystalline materials with shear band

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A phase mixture model was used to study the plastic deformation behaviors in hardening stage of nanocrystalline materials. The material was considered as a composite of grain interior phase and grain boundary (GB) phase. The constitutive equations of the two phases were determined in term of their main deformation mechanisms. In softening stage, a shear band deformation mechanism was presented and the corresponding constitutive relation was established. Numerical simulations have shown that the predications fit well with experimental data. The investigation using the finite-element method (FEM) provided a direct insight into quantifying shear localization effect in nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arroyo M, Belytschko T (2005) Meccanica 40:455–469

    Article  MathSciNet  MATH  Google Scholar 

  2. Wan H, Delale F (2010) Meccanica 45:43–51

    Article  MATH  Google Scholar 

  3. Omidi M, Alaie S, Rousta A (2012) Meccanica 47:817–833

    Article  MathSciNet  Google Scholar 

  4. Zhou JQ, Li ZH, Zhu RT, Li YL, Zhang ZZ (2008) J Mater Process Technol 197:325–336

    Article  Google Scholar 

  5. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51(4):427–556

    Article  Google Scholar 

  6. Kim HS, Estrin Y, Bush MB (2000) Acta Mater 48(2):493–504

    Article  Google Scholar 

  7. Kim HS, Estrin Y (2005) Acta Mater 53:765–772

    Article  Google Scholar 

  8. Zhou JQ, Zhu RT, Zhang ZZ (2008) Mater Sci Eng A 480:419–427

    Article  Google Scholar 

  9. Islamgaliev RK, Valiev RZ, Mishra RS, Mukherjee AK (2001) Mater Sci Eng A 304–306:206–210

    Google Scholar 

  10. Mukherjee AK (2002) Mater Sci Eng A 322:1–22

    Article  Google Scholar 

  11. Gutkin YuM, Ovid_ko IA, Skiba NV (2004) Acta Mater 52:1711–1720

    Article  Google Scholar 

  12. Joshi SP, Ramesh KT (2008) Acta Mater 56:282–291

    Article  Google Scholar 

  13. Coble RL (1963) J Appl Phys 34:1679–1682

    Article  ADS  Google Scholar 

  14. Conrad H, Narayan J (2000) Scr Mater 42:1025–1030

    Article  Google Scholar 

  15. Nabarro FRN (1948) Report of a conference on the strength of solids Physical Society, London, pp 75–90

    Google Scholar 

  16. Herring C (1950) J Appl Phys 21:437–445

    Article  ADS  Google Scholar 

  17. Estrin Y (1996) Dislocation-density-related constitutive modeling. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, New York, pp 69–106

    Chapter  Google Scholar 

  18. Jiang H, Zhou JQ, Zhu RT, Liu YG (2011) Mater Des 32:598–604

    Article  Google Scholar 

  19. Soppa E, Schmauder S, Fischer G, Thesing J, Ritter R (1999) Comput Mater Sci 16:323–332

    Article  Google Scholar 

  20. Berbenni S, Favier V, Berveiller M (2007) Comput Mater Sci 39:96–105

    Article  Google Scholar 

  21. Gross D, Li M (2002) Appl Phys Lett 80:746–748

    Article  ADS  Google Scholar 

  22. Li S, Zhou JQ, Ma L, Xu N, Zhu RT, He XH (2009) Comput Mater Sci 45:390–397

    Article  Google Scholar 

  23. Zhou JQ, Li YL, Zhang ZZ (2007) Acta Mech Solida Sin 20:13–20

    Google Scholar 

  24. Ranganathan S, Divakarb R, Raghunathanb VS (2001) Scr Mater 44:1169–1174

    Article  Google Scholar 

  25. ABAQUS (2002) Reference Manual. Hibbit, Karlson and Sorensen, Pawtucket

    Google Scholar 

  26. Zhu RT, Zhou JQ, Jiang H, Liu YG, Ling X (2010) Mater Sci Eng A 527:1751–1760

    Article  Google Scholar 

  27. Zhu RT, Zhou JQ, Li XB, Jiang H, Ling X (2010) Mater Charact 61:396–401

    Article  Google Scholar 

  28. Frost H, F AM (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  29. Wei YJ, Gao HJ (2008) Mater Sci Eng A 478:16–25

    Article  Google Scholar 

  30. Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521–1533

    Article  Google Scholar 

  31. Hasnaoui A, Van Swygenhoven H, Derlet PM (2002) Phys Rev B 66:184112

    Article  ADS  Google Scholar 

  32. Sansoz F, Dupont V (2007) Mater Sci Eng C 27:1509–1513

    Article  Google Scholar 

  33. Weng GJ (1983) J Mech Phys Solids 31:193–203

    Article  ADS  MATH  Google Scholar 

  34. Li J, Weng GJ (2007) Int J Plast 23:2115–2133

    Article  MATH  Google Scholar 

  35. Jiang B, Weng GJ (2003) Metall Mater Trans 34A:765–772

    Google Scholar 

  36. Jiang B, Weng GJ (2004) J Mech Phys Solids 52:1125–1149

    Article  ADS  MATH  Google Scholar 

  37. Jiang B, Weng GJ (2004) Int J Plast 20:2007–2026

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Innovation Program for College Graduates of Jiangsu Province (CXZZ11_0342), Natural Science Foundation of Hubei Province (Q20111501) and Key Project of Chinese Ministry of Education (211061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zhang or Jianqiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wang, Y., Jiang, H. et al. Constitutive model for plastic deformation of nanocrystalline materials with shear band. Meccanica 48, 175–185 (2013). https://doi.org/10.1007/s11012-012-9592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9592-8

Keywords

Navigation