Skip to main content
Log in

A general formula for the drag on a sphere placed in a creeping unsteady micropolar fluid flow

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present work, we investigate the creeping unsteady motion of an infinite micropolar fluid flow past a fixed sphere. The technique of Laplace transform is used. The drag formula is obtained in the physical domain analytically by using the complex inversion formula of the Laplace transform. The well known formula of Basset for the drag on a sphere placed in an unsteady viscous fluid flow and that of Ramkissoon and Majumdar for steady motion in the case of micropolar fluids are recovered as special cases. The obtained formula is employed to calculate the drag force for some micropolar fluid flows. Numerical results are obtained and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–218

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen AC (1998) Microcontinuum field theories I and II. Springer, New York

    Google Scholar 

  3. Sherief HH, Faltas MS, Ashmawy EA (2009) Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. J Fluid Mech 619:277–293

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  5. Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107

    Google Scholar 

  6. Eringen AC (1990) Theory of thermo-microstretch fluids and bubbly liquids. Int J Eng Sci 28:133–143

    Article  MathSciNet  MATH  Google Scholar 

  7. De Gennes PG Prost J (1993) The physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  8. Hayakawa H (2002) Collisional granular flow as a micropolar fluid. Phys Rev Lett 88:174301

    Article  ADS  Google Scholar 

  9. Ramkissoon H, Majumdar SR (1976) Drag on an axially symmetric body in the Stokes’ flow of micropolar fluid. Phys Fluids 19:16–21

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Palaniappan D, Ramkissoon H (2005) A drag formula revisited. Int J Eng Sci 43:1498–1501

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffmann K, Marx D, Botkin N (2007) Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations. J Fluid Mech 590:319–330

    Article  ADS  MATH  Google Scholar 

  12. Shu J-J, Lee JS (2008) Fundamental solutions for micropolar fluids. J Eng Math 61:69–79

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayakawa H (2000) Slow viscous flows in micropolar fluids. Phys Rev 61:5477–5492

    ADS  Google Scholar 

  14. Sherief HH, Faltas MS, Ashmawy EA (2011) Slow motion of a sphere moving normal to two infinite parallel plane walls in a micropolar fluid. Math Comput Model 53:376–386

    Article  MathSciNet  MATH  Google Scholar 

  15. Rao SKL, Rao PB (1971) The oscillations of a sphere in a micropolar fluid. Int J Eng Sci 9:651–672

    Article  MATH  Google Scholar 

  16. Charya DS, Iyengar TKV (1997) Drag on an axisymmetric body performing rectilinear oscillations in a micropolar fluid. Int J Eng Sci 35:987–1001

    Article  MATH  Google Scholar 

  17. Sran KS (1990) Longitudinal oscillations of a sphere in a micropolar fluid. Acta Mech 85:71–78

    Article  Google Scholar 

  18. Asghar S, Hanif K, Hayat T (2007) The effect of the slip condition on unsteady flow due to non-coaxial rotations of disk and a fluid at infinity. Meccanica 42:141–148

    Article  MATH  Google Scholar 

  19. Ashmawy EA (2011) Unsteady couette flow of a micropolar fluid with slip. Meccanica 47:85–94

    Article  MathSciNet  Google Scholar 

  20. Churchill RV (1972) Operational mathematics. McGraw-Hill, New York

    MATH  Google Scholar 

  21. Spiegel M (1965) Theory and problems of Laplace transforms. McGraw-Hill, New York

    Google Scholar 

  22. Basset AB (1961) A treatise on hydrodynamics. Dover, New York

    Google Scholar 

  23. Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ashmawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashmawy, E.A. A general formula for the drag on a sphere placed in a creeping unsteady micropolar fluid flow. Meccanica 47, 1903–1912 (2012). https://doi.org/10.1007/s11012-012-9562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9562-1

Keywords

Navigation