Skip to main content
Log in

Magnetic effect on instability and nonlinear stability in a reacting fluid

  • Published:
Meccanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the problem of convective movement of a reacting solute in a viscous incompressible fluid occupying a plane layer and subjected to a vertical magnetic field. The thresholds for linear instability are found and compared to those derived by a global nonlinear energy stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Franchi F, Straughan B (2001) A comparison of the Graffi and Kazhikhov-Smagulov models for top heavy pollution instability. Adv Water Resour 24:585–594

    Article  Google Scholar 

  2. Hayat T, Nawaz M (2011) Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk. J Taiwan Inst Chem Eng 42:41–49

    Article  Google Scholar 

  3. Malashetty MS, Biradar BS (2011) The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys Fluids 23:064102

    Article  ADS  Google Scholar 

  4. Rahman MM, Al-Lawatia M (2010) Effects of higher order chemical reaction on micropolar fluid flow on a power law permeable stretched sheet with variable concentration in a porous medium. Can J Chem Eng 88:23–32

    Article  Google Scholar 

  5. Eltayeb IA, Hamza EA, Jervase JA, Krishnan EV, Loper DE (2004) Compositional convection in the presence of a magnetic field. I. A single interface. Proc R Soc Lond Ser A, Math Phys Sci 460:3505–3528

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Eltayeb IA, Hamza EA, Jervase JA, Krishnan EV, Loper DE (2005) Compositional convection in the presence of a magnetic field. II. Cartesian plume. Proc R Soc Lond Ser A, Math Phys Sci 461:2605–2633

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Kaloni PN, Mahajan A (2011) Stability of magnetic fluid motions in a saturated porous medium. Z Angew Math Phys 62:529–538

    Article  MathSciNet  Google Scholar 

  8. Maehlmann S, Papageorgiou DT (2011) Interfacial instability in electrified plane Couette flow. J Fluid Mech 666:155–188

    Article  MathSciNet  MATH  Google Scholar 

  9. Nanjundappa CE, Ravisha M, Lee J, Shivakumara IS (2011) Penetrative ferroconvection in a porous layer. Acta Mech 216:243–257

    Article  MATH  Google Scholar 

  10. Reddy PDS, Bandyopadhyay D, Joo SW, Sharma A, Qian S (2011) Parametric study on instabilities in a two-layer electromagnetohydrodynamic channel flow confined between two parallel electrodes. Phys Rev E 83:036313

    Article  ADS  Google Scholar 

  11. Shivakumara IS, Ng CO, Nagashree MS (2011) The onset of electrothermoconvection in a rotating Brinkman porous layer. Int J Eng Sci 49:6464–6663

    Article  MathSciNet  Google Scholar 

  12. Shivakumara IS, Lee J, Ravisha M, Raddy RG (2011) Effects of MFD viscosity and LTNE on the onset of ferromagnetic convection in a porous medium. Int J Heat Mass Transf 54:2630–2641

    Article  MATH  Google Scholar 

  13. Sunil, Sharma P, Mahajan A (2010) Onset of Darcy-Brinkman double-diffusive convection in a magnetized ferrofluid layer using a thermal non-equilibrium model: a nonlinear stability analysis. J Geophys Eng 7:417–430

    Article  Google Scholar 

  14. Bera P, Khalili A (2006) Influence of Prandtl number on stability of mixed convective flow in a vertical channel filled with a porous medium. Phys Fluids 18:124103

    Article  ADS  Google Scholar 

  15. Bera P, Kumar J, Khalili A (2011) Hot springs mediate spatial exchange of heat and mass in the enclosed sediment domain: a stability perspective. Adv Water Resour 34:817–828

    Article  ADS  Google Scholar 

  16. Chen X, Wang S, Tao J (2011) Stability analysis of thermosolutal convection in a horizontal porous layer using a thermal non-equilibrium model. Int J Heat Fluid Flow 32:78–87

    Article  Google Scholar 

  17. Yang D, Zeng R, Zhang D (2011) Numerical simulation of convective stability of the short-term storage of CO2 in saline aquifiers. Int J Greenh Gas Control 5:986–994

    Article  Google Scholar 

  18. Kumar A, Bera P, Kumar J (2011) Non-Darcy mixed convection in a vertical pipe filled with porous medium. Int J Therm Sci 50:725–735

    Article  Google Scholar 

  19. Kumar A, Bera P, Khalili A (2010) Influence of inertia and drag terms on the stability of mixed convection in a vertical porous-medium channel. Int J Heat Mass Transf 53:23–24

    Google Scholar 

  20. Papanicolaou NC, Christov C, Jordan PM (2011) The influence of thermal relaxation on the oscillatory properties of two-gradient convection in a vertical slot. Eur J Mech B, Fluids 30:68–75

    Article  MATH  Google Scholar 

  21. Saravanan S, Sivakumar T (2011) Onset of thermovibrational filtration convection: departure from thermal equilibrium. Phys Rev E 84:026307

    Article  ADS  Google Scholar 

  22. Saravanan S, Brindha D (2011) Linear and non-linear stability limits for centrifugal convection in an anisotropic layer. Int J Non-Linear Mech 46:65–72

    Article  Google Scholar 

  23. Shivakumara IS, Lee J, Vajravelu K, Mamatha AL (2011) Effects of thermal nonequilibrium and non-uniform temperature gradients on the onset of convection in a heterogeneous porous medium. Int Commun Heat Mass Transf 38:906–910

    Article  Google Scholar 

  24. Shivakumara IS, Lee J, Chavaraddi KB (2011) Onset of surface tension driven convection in a fluid layer overlying a layer of an anisotropic porous medium. Int J Heat Mass Transf 54:994–1001

    Article  MATH  Google Scholar 

  25. Galdi GP, Straughan B (1985) Exchange of stabilities, symmetry and nonlinear stability. Arch Ration Mech Anal 89:211–228

    Article  MathSciNet  MATH  Google Scholar 

  26. Rionero S (1968) Metodi variazionali per la stabilitá asintotica in media in magnetoidrodinamica. Ann Mat Pura Appl 78:339–364

    Article  MathSciNet  MATH  Google Scholar 

  27. Galdi GP (1985) Nonlinear stability of the magnetic Bénard problem via a generalized energy method. Arch Ration Mech Anal 87:167–186

    Article  MathSciNet  MATH  Google Scholar 

  28. Rionero S, Mulone G (1988) Nonlinear stability analysis of the magnetic Bénard problem through the Lyapunov direct method. Arch Ration Mech Anal 103:347–368

    Article  MathSciNet  MATH  Google Scholar 

  29. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New York

    Google Scholar 

  30. Roberts PH (1967) An introduction to magnetohydrodynamics. Longman, London

    Google Scholar 

  31. Landau L, Lifshitz E, Pitaevskii L (1984) Electrodynamics of continuous media. Pergamon, London

    Google Scholar 

  32. Fabrizio M, Morro A (2003) Electromagnetism of continuous media. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  33. Straughan B (2004) The energy method, stability, and nonlinear convection, 2nd edn. Series in Applied Mathematical Sciences, vol 91. Springer, Berlin

    MATH  Google Scholar 

  34. Capone F, Gentile M, Hill AA (2009) Anisotropy and symmetry in porous media convection. Acta Mech 208:205–214

    Article  MATH  Google Scholar 

  35. Capone F, Gentile M, Hill AA (2010) Penetrative convection via internal heating in anisotropic porous media. Mech Res Commun 37:441–444

    Article  Google Scholar 

  36. Capone F, Gentile M, Hill AA (2011) Penetrative convection in anisotropic porous media with variable permeability. Acta Mech 216:49–58

    Article  MATH  Google Scholar 

  37. Capone F, Gentile M, Hill AA (2011) Double-diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int J Heat Mass Transf 54:1622–1626

    Article  MATH  Google Scholar 

  38. Hill AA, Carr M (2010) Sharp global nonlinear stability for a fluid overlying a highly porous material. Proc R Soc Lond Ser A, Math Phys Sci 466:127–140

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Sunil P Sharma, Mahajan A (2011) Onset of Darcy-Brinkman ferroconvection in a rotating porous layer using a thermal non-equilibrium model: a nonlinear stability analysis. Transp Porous Media 88:421–439

    Article  MathSciNet  Google Scholar 

  40. Sunil P, Mahajan AA (2008) Nonlinear stability analysis for magnetized ferrofluid heated from below. Proc R Soc Lond Ser A, Math Phys Sci 464:83–98

    Article  MathSciNet  MATH  Google Scholar 

  41. Dongarra J, Straughan B, Walker D (1996) Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl Numer Math 22:399–435

    Article  MathSciNet  MATH  Google Scholar 

  42. Straughan B, Walker DW (1996) Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J Comput Phys 127:128–141

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Straughan B, Walker DW (1996) Anisotropic porous penetrative convection. Proc R Soc Lond Ser A, Math Phys Sci 452:97–115

    Article  ADS  MATH  Google Scholar 

  44. Straughan B, Walker DW (1997) Multi component diffusion and penetrative convection. Fluid Dyn Res 19:77–89

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Leverhulme Trust, “Tipping points: mathematics, metaphors and meanings”, and in part by a scholarship from the Iraqi ministry of higher education and scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Harfash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harfash, A.J., Straughan, B. Magnetic effect on instability and nonlinear stability in a reacting fluid. Meccanica 47, 1849–1857 (2012). https://doi.org/10.1007/s11012-012-9558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9558-x

Keywords

Navigation