Skip to main content
Log in

Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An analysis is presented for the steady non-linear viscous flow of an incompressible viscous fluid over a horizontal surface of variable temperature with a power-law velocity under the influences of suction/blowing, viscous dissipation and thermal radiation. Numerical results are illustrated by means of tables and graphs. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The effects of the stretching parameter n, suction/blowing parameter b, Prandtl number σ, Eckert number \(E_{c}(E_{c}^{ *} )\) and radiation parameter N R are discussed. Two cases are studied, namely, (i) Prescribed surface temperature (PST case) and, (ii) Prescribed heat flux at the sheet (PHF case).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces. AIChE J 7:26–28

    Article  Google Scholar 

  2. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  3. Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q Appl Math 33:73–78

    Google Scholar 

  4. Carragher P, Crane LJ (1982) Heat transfer on a continuous stretching sheet. Z Angew Math Mech 62:564–565

    Article  Google Scholar 

  5. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–746

    Article  Google Scholar 

  6. Danberg JE, Fansler KS (1976) A non-similar moving wall boundary-layer problem. Q Appl Math 34:305–309

    MATH  Google Scholar 

  7. Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37(4):231–245

    Article  MATH  ADS  Google Scholar 

  8. Yih KA (1998) The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta Mech 130:147–158

    Article  MATH  Google Scholar 

  9. Gorla RSR, Sidawi I (1994) Free convection on a vertical stretching surface with suction or blowing. Appl Sci Res 52:247–257

    Article  MATH  Google Scholar 

  10. Badruddin IA, Zainal ZA, Narayana PAA, Seetharamu KN, Siew LW (2006) Free convection and radiation characteristics for a vertical plate embedded in a porous medium. Int J Numer Methods Eng 65:2265–2278

    Article  MATH  Google Scholar 

  11. Labropolu F, Dorrepaal JM, Chandna OP (1993) Viscoelastic fluid flow impinging on a wall with suction or blowing. Mech Res Commun 20:143–153

    Article  Google Scholar 

  12. Gupta AS, Misra JC, Reza M (2003) Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid. Fluid Dyn Res 32:283–294

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf 44:921–927

    Article  ADS  Google Scholar 

  14. Ishak A, Nazar R, Pop I (2006) Magnetohydrodynamic stagnation-point flow towards a stretching vertical sheet. Magnetohydrodynamics 42:17–30

    Google Scholar 

  15. Cortell R (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168:557–566

    Article  MATH  MathSciNet  Google Scholar 

  16. Cortell R (1994) Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 29:155–161

    Article  MATH  Google Scholar 

  17. Kelly D, Vajravelu K, Andrews L (1999) Analysis of heat and mass transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet. Nonlinear Anal 36:767–784

    Article  MATH  MathSciNet  Google Scholar 

  18. Vajravelu K, Rollings D (2004) Hydromagnetic flow of a second grade fluid over a stretching sheet. Appl Math Comput 148:783–791

    Article  MATH  MathSciNet  Google Scholar 

  19. Cortell R (2006) MHD boundary-layer flow and heat transfer of a non-Newtonian power-law fluid past a moving plate with thermal radiation. Nuovo Cimento B 121:951–964

    ADS  Google Scholar 

  20. Massoudi M, Maneschy CE (2004) Numerical solution to the flow of a second grade fluid over a stretching sheet using the method of quasi-linearization. Appl Math Comput 149:165–173

    Article  MATH  MathSciNet  Google Scholar 

  21. Cortell R (2007) Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Comput Math Appl 53:305–316

    Article  MATH  Google Scholar 

  22. Liu I-Ch (2005) Flow and heat transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field. Int J Non-Linear Mech 40:465–474

    Article  MATH  Google Scholar 

  23. Cortell R (2007) Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. Int J Heat Mass Transf 50:3152–3162

    Article  MATH  Google Scholar 

  24. Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85

    Article  MATH  Google Scholar 

  25. Cortell R (2006) Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field. Int J Heat Mass Transf 49:1851–1856

    Article  MATH  Google Scholar 

  26. Cortell R (2006) Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys Lett A 357:298–305

    Article  MATH  ADS  Google Scholar 

  27. Cortell R (2011) Suction, viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chem Eng Res Des 89:85–93

    Article  Google Scholar 

  28. Cortell R (2010) On a certain boundary value problem arising in shrinking sheet flows. Appl Math Comput 217:4086–4093

    Article  MATH  MathSciNet  Google Scholar 

  29. Ishak A (2010) Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45:367–373

    Article  Google Scholar 

  30. Ishak A, Yacob NA, Bachok N (2010) Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica in press. doi:10.1007/s11012-010-9338-4

  31. Cortell R (2010) Internal heat generation and radiation effects on a certain free convection flow. Int J Nonlinear Sci 9:468–479

    MathSciNet  Google Scholar 

  32. Kumaran V, Ramanaiah G (1996) A note on the flow over a stretching sheet. Acta Mech 116:229–233

    Article  MATH  Google Scholar 

  33. Elbashbeshy EMA (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53:643–651

    MATH  Google Scholar 

  34. Sajid M, Hayat T, Asghar S, Vajravelu K (2008) Analytic solution for axisymmetric flow over a nonlinearly stretching sheet. Arch Appl Mech 78:127–134

    Article  MATH  Google Scholar 

  35. Anjali Devi SP, Thiyagarajan M (2006) Steady non-linear hydromagnetic flow and heat transfer over a stretching surface of variable temperature. Heat Mass Transf 42:671–677

    Article  ADS  Google Scholar 

  36. Vajravelu K (2001) Viscous flow over a nonlinearly stretching sheet. Appl Math Comput 124:281–288

    Article  MATH  MathSciNet  Google Scholar 

  37. Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184:864–873

    Article  MATH  MathSciNet  Google Scholar 

  38. Cortell R (2008) Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys Lett A 372:631–636

    Article  MATH  ADS  Google Scholar 

  39. Abbas Z, Hayat T (2008) Radiation effects on MHD flow in a porous space. Int J Heat Mass Transf 51:1024–1033

    Article  MATH  Google Scholar 

  40. Hayat T, Abbas Z, Javed T (2008) Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys Lett A 372:637–647

    Article  MATH  ADS  Google Scholar 

  41. Akyildiz FT, Siginer DA (2010) Galerkin-Legendre spectral method for the velocity and thermal boundary layer over a non-linearly stretching sheet. Nonlinear Anal, Real World Appl 11:735–741

    Article  MATH  MathSciNet  Google Scholar 

  42. Van Gorder RA, Vajravelu K (2010) A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. Arch Appl Mech 80:1329–1332

    Article  Google Scholar 

  43. Van Gorder RA, Vajravelu K, Akyildiz FT (2011) Existence and uniqueness results for a nonlinear differential equation arising in viscous flow over a nonlinearly stretching sheet. Appl Math Lett 24(2):238–242

    Article  MATH  MathSciNet  Google Scholar 

  44. Brewster MQ (1972) Thermal Radiative Transfer Properties. Wiley, New York

    Google Scholar 

  45. Raptis A, Perdikis C, Takhar HS (2004) Effect of thermal radiation on MHD flow. Appl Math Comput 153:645–649

    Article  MATH  MathSciNet  Google Scholar 

  46. Cortell R (2008) Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys Lett A 372:2431–2439

    Article  MATH  Google Scholar 

  47. Van Gorder RA, Vajravelu K (2010) A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems. Appl Math Comput 217:460–465

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Cortell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortell, R. Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall. Meccanica 47, 769–781 (2012). https://doi.org/10.1007/s11012-011-9488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9488-z

Keywords

Navigation