Skip to main content
Log in

Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

We evaluated the in vitro effects of galactose at 0.1, 3.0, 5.0 and 10.0 mM on thiobarbituric acid-reactive substances (TBA-RS), total sulfhydryl content, protein carbonyl content, on the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and on acetylcholinesterase (AChE) activity in the cerebral cortex, cerebellum and hippocampus of rats. We also investigated the influence of the antioxidants (each at 1 mM), α-tocopherol, ascorbic acid and glutathione, on the effects elicited by galactose on the parameters tested. Results showed that galactose, at a concentration of 3.0 mM, enhanced TBA-RS levels in the hippocampus, cerebral cortex and cerebellum of rats. In the cerebral cortex, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and protein carbonyl content, and at 10.0 mM increased CAT activity and decreased AChE activity. In the cerebellum, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS, SOD and GSH-Px activities. In the hippocampus, galactose at concentrations of 5.0 and 10.0 mM increased TBA-RS and CAT activity and at 10.0 mM decreased GSH-Px. Data showed that at the pathologically high concentration (greater than 5.0 mM), galactose induces lipid peroxidation, protein carbonylation, alters antioxidant defenses in the cerebrum, and also alters cholinesterase activity. Trolox, ascorbic acid and glutathione addition prevented the majority of alterations in oxidative stress parameters and the decrease in AChE activity that were caused by galactose. Our findings lend support to a potential therapeutic strategy for this condition, which may include the use of appropriate antioxidants for ameliorating the damage caused by galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  • Avrova NF, Shestak KI, Zakharova IO, Sokolova TV, Leont’ev VG (1999) The difference in the effect of glutamate and NO synthase inhibitor on free calcium concentration and Na+, K+- ATPase activity in synaptosomes from various brain regions. Neurochem Res 24(9):1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Bosch AM, Bakker HD, Van Gennip AH, Van Kempen JV, Wanders RJA, Wijburg FA (2002) Clinical features of galactokinase deficiency: a review of the literature. J Inherit Metab Dis 25:629–634

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-bye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Budnia J, Pacheco R, da Silva S, Garcez ML, Mina F, Bellettini-Santos T, de Medeiros J, Voss BC, Steckert AV, Valvassori SS, Quevedo J (2016) Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav Brain Res 302:35–43

    Article  Google Scholar 

  • Chiappori F, Merelli I, Milanesi L, Marabotti A (2013) Static and dynamic interactions between GALK enzyme and known inhibitors: guidelines to design new drugs for galactosemic patients. Eur J Med Chem 63:423–434

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Wang L, Zuo P, Han Z, Fang Z, Li W, Liu J (2004) D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology 5(5):317–325

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AGK, Da Cunha AA, Machado FR, Pederzolli CD, Dalazen GR, De Assis AM, Wyse ATS (2012) Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver. J Cell Biochem 113(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Gitzelmann R (1995) Galactose-1-phosphate in the pathophysiology of galactosemia. Eur. J Pediatr 154(7):S45–S49

    CAS  Google Scholar 

  • Gong Y, Guo J, Hua K, Gaoa Y, Xie B, Sunb Z, Yang E, Hou F (2016) Ameliorative effect of lotus seedpod proanthocyanidins on cognitive impairment and brain aging induced by D-galactose. Exp Gerontol 74:21–28

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biom J 37(3):99–105

    Google Scholar 

  • Jumbo-Lucioni PP, Hopson ML, Hang D, Liang Y, Jones DD, Fridovich-Keil JL (2013) Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech 6:84–94

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Lu J, DM W, Zheng YL, Hu B, Zhang ZF (2010) Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol 20(3):598–612

    Article  CAS  PubMed  Google Scholar 

  • Mak CM, Lee HC, Chan AY, Lam CW (2013) Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci 50(6):142–162

    Article  CAS  PubMed  Google Scholar 

  • Marinou K, Tsakiris S, Tsopanakis C, Schulpis KH, Behrakis P (2005) Suckling rat brain regional distribution of acetylcholinesterase activity in galactosaemia in vitro. Metab Brain Dis 20(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Handbook for oxygen radical research. CRC Press,Boca Raton, pp. 243–247

  • McCorvie TJ, Timson DJ (2011) The structural and molecular biology of type i galactosemia: enzymology of galactose 1-phosphate uridylyltransferase. IUBMB Life 63(9):694–700

    CAS  PubMed  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45:117–127

    Article  CAS  PubMed  Google Scholar 

  • Pohanka M (2011) Cholinesterases, a target of pharmacology and toxicology. Biomed Pap 155(3):219–230

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  • Rover Junior L, Höehr NF, Vellasco AP, Kubota LT (2001) Sistema antioxidante envolvendo o ciclo metabólico da glutationa associado à métodos eletroanalíticos na avaliação do estresse oxidativo. Química Nova. 24(1):112–119

    Article  CAS  Google Scholar 

  • Shan Q, Lu J, Zheng Y, Li J, Zhou Z, Hu B, Zhang Z, Fan S, Mao Z, Wang Y, Ma D (2009) Purple sweet potato color ameliorates cognition deficits and attenuates oxidative damage and inflammation in aging mouse brain induced by D-galactose. J Biomed Biotechnol Article ID 564737, 9 pages

  • Shen YX, SY X, Wei W, Sun XX, Yang J, Liu LH, Dong C (2002) Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res 32(3):173–178

    Article  CAS  PubMed  Google Scholar 

  • Silva CG, Bueno ARF, Schuck PF, Leipnitz G, Ribeiro CA, Rosa RB, Dutra Filho CS, Wyse AT, Wannmacher CM, Wajner M (2004) Inhibition of creatine kinase activity from rat cerebral cortex byD-2-hydroxyglutaric acid in vitro. Neurochem Int 44:45–52

    Article  PubMed  Google Scholar 

  • Timson DJ (2006) Critical Review: the structural and molecular biology of type III galactosemia. IUBMB Life 58(2):83–89

    Article  CAS  PubMed  Google Scholar 

  • Timson DJ (2014) Purple sweet potato colour-a potential therapy for galactosemia? Int J Food Sci Nutr 65(4):391–393

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC (2000) Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibiton induced by free radicals. Clin Biochem 33:103–106

    Article  CAS  PubMed  Google Scholar 

  • Viggiano E, Marabotti A, Burlina AP, Cazzorla C, D’Apice MR, Giordano L, Burlina AB (2015) Clinical and molecular spectra in galactosemic patients from neonatal screening in northeastern Italy: structural and functional characterization of new variations in the galactose-1-phosphate uridyltransferase (GALT) gene. Gene 559(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  • Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 46:200–206

    Article  CAS  Google Scholar 

  • Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  CAS  PubMed  Google Scholar 

  • Young IS, Woodside JV (2001) Antioxidants in health and disease antioxidants in health and disease. J Clin Pathol 54(3):176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou GM (2007) Cancer stem cells in leukemia, recent advances. J Cell Physiol 213(2):440–444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Universidade da Região de Joinville and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Brasil).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delwing-de Lima, D., Fröhlich, M., Dalmedico, L. et al. Galactose alters markers of oxidative stress and acetylcholinesterase activity in the cerebrum of rats: protective role of antioxidants. Metab Brain Dis 32, 359–368 (2017). https://doi.org/10.1007/s11011-016-9915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9915-x

Keywords

Navigation