Skip to main content
Log in

Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous Arab families with intellectual disability

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Intellectual disability is a heterogeneous disease with many genes and mutations influencing the phenotype. Consanguineous families constitute a rich resource for the identification of rare variants causing autosomal recessive disease, due to the effects of inbreeding. Here, we examine three consanguineous Arab families, recruited in a quest to identify novel genes/mutations. All the families had multiple offspring with non-specific intellectual disability. We identified homozygosity (autozygosity) intervals in those families through SNP genotyping and whole exome sequencing, with variants filtered using Ingenuity Variant Analysis (IVA) software. The families showed heterogeneity and novel mutations in three different genes known to be associated with intellectual disability. These mutations were not found in 514 ethnically matched control chromosomes. p.G410C in WWOX, p.H530Y in RARS2, and p.I69F in C10orf2 are novel changes that affect protein function and could give new insights into the development and function of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. doi:10.1038/nature15393

    Article  Google Scholar 

  • Abdel-Salam G, Thoenes M, Afifi HH, Körber F, Swan D, Bolz HJ (2014) The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J Rare Dis. 9:12. doi:10.1186/1750-1172-9-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI (2015) Pleiotropic functions of tumor suppressor WWOX in normal and cancer cells. J Biol Chem 290(52):30728–30735. doi:10.1074/jbc.R115.676346

    Article  CAS  PubMed  Google Scholar 

  • Alkuraya FS (2010) Homozygosity mapping: one more tool in the clinical geneticist's toolbox. Genet Med 12(4):236–239. doi:10.1097/GIM.0b013e3181ceb95d

    Article  PubMed  Google Scholar 

  • Alkuraya FS (2013) The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 132(11):1197–1211. doi:10.1007/s00439-013-1344-x

    Article  CAS  PubMed  Google Scholar 

  • Ben-Salem S, Al-Shamsi AM, John A, Ali BR, Al-Gazali L (2015) A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy. J Mol Neurosci 56(1):17–23. doi:10.1007/s12031-014-0463-8

    Article  CAS  PubMed  Google Scholar 

  • Cassandrini D, Cilio MR, Bianchi M, Doimo M, Balestri M, Tessa A, Rizza T, Sartori G, Meschini MC, Nesti C, Tozzi G, Petruzzella V, Piemonte F, Bisceglia L, Bruno C, Dionisi-Vici C, D'Amico A, Fattori F, Carrozzo R, Salviati L, Santorelli FM, Bertini E (2013) Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients. J Inherit Metab Dis 36(1):43–53. doi:10.1007/s10545-012-9487-9

    Article  CAS  PubMed  Google Scholar 

  • Chang NS (2015) Introduction to a thematic issue for WWOX. Exp Biol Med (Maywood) 240(3):281–284. doi:10.1177/1535370215574226

    Article  CAS  Google Scholar 

  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. doi:10.4161/fly.19695

    Article  CAS  Google Scholar 

  • Delobel-Ayoub M, Ehlinger V, Klapouszczak D, Maffre T, Raynaud JP, Delpierre C, Arnaud C (2015) Socioeconomic disparities and prevalence of autism Spectrum disorders and intellectual disability. PLoS ONE 10(11):e0141964. doi:10.1371/journal.pone.0141964

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyment DA, Sawyer SL, Chardon JW, Boycott KM (2013) Recent advances in the genetic etiology of brain malformations. Curr Neurol Neurosci Rep 13(8):364. doi:10.1007/s11910-013-0364-1

    Article  PubMed  Google Scholar 

  • Echaniz-Laguna A, Chanson JB, Wilhelm JM, Sellal F, Mayençon M, Mohr M, Tranchant C (2010) Mousson de Camaret B. A novel variation in the twinkle linker region causing late-onset dementia. Neurogenetics 11(1):21–25. doi:10.1007/s10048-009-0202-4

    Article  PubMed  Google Scholar 

  • Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81(4):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison JW, Rosenfeld JA, Shaffer LG (2013) Genetic basis of intellectual disability. Annu Rev Med 64:441–450. doi:10.1146/annurev-med-042711-140053

    Article  CAS  PubMed  Google Scholar 

  • Faruq M, Narang A, Kumari R, Pandey R, Garg A, Behari M, Dash D, Srivastava AK, Mukerji M (2014) Novel mutations in typical and atypical genetic loci through exome sequencing in autosomal recessive cerebellar ataxia families. Clin Genet 86(4):335–341. doi:10.1111/cge.12279

    Article  CAS  PubMed  Google Scholar 

  • Glamuzina E, Brown R, Hogarth K, Saunders D, Russell-Eggitt I, Pitt M, de Sousa C, Rahman S, Brown G, Grunewald S (2012) Further delineation of pontocerebellar hypoplasia type 6 due to mutations in the gene encoding mitochondrial arginyl-tRNA synthetase, RARS2. J Inherit Metab Dis 35(3):459–467. doi:10.1007/s10545-011-9413-6

    Article  PubMed  Google Scholar 

  • Hartley JN, Booth FA, Del Bigio MR, Mhanni AA (2012) Novel autosomal recessive c10orf2 mutations causing infantile-onset spinocerebellar ataxia. Case Rep Pediatr 2012:303096. doi:10.1155/2012/303096

    PubMed  PubMed Central  Google Scholar 

  • Iqbal Z, van Bokhoven H (2014) Identifying genes responsible for intellectual disability in consanguineous families. Hum Hered 77(1–4):150–160. doi:10.1159/000360539

    Article  PubMed  Google Scholar 

  • Joseph JT, Innes AM, Smith AC, Vanstone MR, Schwartzentruber JA, Bulman DE, Majewski J, Daza RA, Hevner RF, Michaud J (2014) Boycott KM; FORGE Canada consortium. Neuropathologic features of pontocerebellar hypoplasia type 6. J Neuropathol Exp Neurol 73(11):1009–1025. doi:10.1097/NEN.0000000000000123

    Article  PubMed  Google Scholar 

  • Kastrissianakis K, Anand G, Quaghebeur G, Price S, Prabhakar P, Marinova J, Brown G, McShane T (2013) Subdural effusions and lack of early pontocerebellar hypoplasia in siblings with RARS2 mutations. Arch Dis Child 98(12):1004–1007. doi:10.1136/archdischild-2013-304308

    Article  PubMed  Google Scholar 

  • Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, Keerthikumar S, Oortveld MA, Kleefstra T, Kramer JM, Webber C, Huynen MA, Schenck A (2016) Systematic Phenomics analysis Deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 98(1):149–164. doi:10.1016/j.ajhg.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  • Lax NZ, Alston CL, Schon K, Park SM, Krishnakumar D, He L, Falkous G, Ogilvy-Stuart A, Lees C, King RH, Hargreaves IP, Brown GK, McFarland R, Dean AF, Taylor RW (2015) Neuropathologic characterization of pontocerebellar hypoplasia type 6 associated with cardiomyopathy and Hydrops Fetalis and severe multisystem respiratory chain deficiency due to novel RARS2 mutations. J Neuropathol Exp Neurol 74(7):688–703. doi:10.1097/NEN.0000000000000209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Schonberg R, Guidugli L, Johnson AK, Arnovitz S, Yang S, Scafidi J, Summar ML, Vezina G, Das S, Chapman K, del Gaudio D (2015) A novel mutation in the promoter of RARS2 causes pontocerebellar hypoplasia in two siblings. J Hum Genet 60(7):363–369. doi:10.1038/jhg.2015.31

    Article  CAS  PubMed  Google Scholar 

  • Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, Drouot N, Renaud M, Klein FA, Anheim M, Tranchant C, Mignot C, Mandel JL, Bedford M, Bauer P, Salih MA, Schüle R, Schöls L, Aldaz CM, Koenig M (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain 137(Pt 2):411–419. doi:10.1093/brain/awt338

    Article  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger T, Kleiss C, Sumara I (2013) CUL3 and protein kinases: insights from PLK1/KLHL22 interaction. Cell Cycle 12(14):2291–2296. doi:10.4161/cc.25369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B, Lefranc J, Saunier A, Allou L, Roth V, Valduga M, Moustaïne A, Auvin S, Barrey C, Chantot-Bastaraud S, Lebrun N, Moutard ML, Nougues MC, Vermersch AI, Héron B, Pipiras E, Héron D, Olivier-Faivre L, Guéant JL, Jonveaux P, Philippe C (2015) WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet 52(1):61–70. doi:10.1136/jmedgenet-2014-102748

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic D, Matic S, Kühl I, Ruzzenente B, Freyer C, Jemt E, Park CB, Falkenberg M, Larsson NG (2013) TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22(10):1983–1993. doi:10.1093/hmg/ddt051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morino H, Pierce SB, Matsuda Y, Walsh T, Ohsawa R, Newby M, Hiraki-Kamon K, Kuramochi M, Lee MK, Klevit RE, Martin A, Maruyama H, King MC, Kawakami H (2014) Mutations in twinkle primase-helicase cause Perrault syndrome with neurologic features. Neurology 83(22):2054–2061. doi:10.1212/WNL.0000000000001036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, Gogos JA (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36(7):725–731

    Article  CAS  PubMed  Google Scholar 

  • Namavar Y, Barth PG, Kasher PR, van Ruissen F, Brockmann K, Bernert G, Writzl K, Ventura K, Cheng EY, Ferriero DM, Basel-Vanagaite L, Eggens VR, Krägeloh-Mann I, De Meirleir L, King M, Graham JM Jr, von Moers A, Knoers N, Sztriha L (2011a) Korinthenberg R; PCH consortium, Dobyns WB, baas F, poll-the BT. Clinical, neuroradiological and genetic findings in pontocerebellar hypoplasia. Brain 134(Pt 1):143–156. doi:10.1093/brain/awq287

    Article  PubMed  Google Scholar 

  • Namavar Y, Barth PG, Poll-The BT, Baas F (2011b) Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis 6:50. doi:10.1186/1750-1172-6-50

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikali K, Suomalainen A, Saharinen J, Kuokkanen M, Spelbrink JN, Lönnqvist T, Peltonen L (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins twinkle and Twinky. Hum Mol Genet 14(20):2981–2990

    Article  CAS  PubMed  Google Scholar 

  • Nunez MI, Ludes-Meyers J, Aldaz CM (2006) WWOX protein expression in normal human tissues. J Mol Histol 37(3–4):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MH, Woo HM, Hong YB, Park JH, Yoon BR, Park JM, Yoo JH, Koo H, Chae JH, Chung KW, Choi BO, Koo SK (2014) Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy. Neurogenetics 15(3):171–182. doi:10.1007/s10048-014-0405-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin J, Brown R, Dobyns WB, Harington J, Patel J, Quinn M, Brown G (2010) Pontocerebellar hypoplasia type 6: a British case with PEHO-like features. Am J Med Genet A 152A(8):2079–2084. doi:10.1002/ajmg.a.33531

    Article  CAS  PubMed  Google Scholar 

  • Schalock RL, Luckasson R (2015) A systematic approach to subgroup classification in intellectual disability. Intellect Dev Disabil 53(5):358–366. doi:10.1352/1934-9556-53.5.358

    Article  PubMed  Google Scholar 

  • Seelow D, Schuelke M. HomozygosityMapper2012–bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res. 2012;40(Web Server issue):W516–20. doi:10.1093/nar/gks487.

  • Shamia A, Shaheen R, Sabbagh N, Almoisheer A, Halees A, Alkuraya FS (2015) Revisiting disease genes based on whole-exome sequencing in consanguineous populations. Hum Genet 134(9):1029–1034. doi:10.1007/s00439-015-1580-3

    Article  CAS  PubMed  Google Scholar 

  • Shutt TE, Gray MW (2006) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62(5):588–599

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Katayama K, Takenaka M, Amakasu K, Saito K, Suzuki K (2009) A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes Brain Behav 8(7):650–660. doi:10.1111/j.1601-183X.2009.00502.x

    Article  CAS  PubMed  Google Scholar 

  • Tabarki B, AlHashem A, AlShahwan S, Alkuraya FS, Gedela S, Zuccoli G (2015) Severe CNS Involvement in WWOX mutations: description of five new cases. Am J med genet a 167(12):3209–3213. doi:10.1002/ajmg.A.37363

    Article  CAS  Google Scholar 

  • Takase K, Ohtsuki T, Migita O, Toru M, Inada T, Yamakawa-Kobayashi K, Arinami T (2001) Association of ZNF74 gene genotypes with age-at-onset of schizophrenia. Schizophr Res 52(3):161–165

    Article  CAS  PubMed  Google Scholar 

  • Valduga M, Philippe C, Lambert L, Bach-Segura P, Schmitt E, Masutti JP, François B, Pinaud P, Vibert M, Jonveaux P (2015) WWOX and severe autosomal recessive epileptic encephalopathy: first case in the prenatal period. J Hum Genet 60(5):267–271. doi:10.1038/jhg.2015.17

    Article  CAS  PubMed  Google Scholar 

  • van Bokhoven H (2011) Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 45:81–104. doi:10.1146/annurev-genet-110410-132512

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the families for their kind participation. This work was supported by QBRI, Hamad Bin Khalifa University (member of Qatar Foundation) and by Jordan University of Science and Technology.

Details of the contribution of individual authors

AA designed the study, analyzed data, and wrote manuscript; SA recruited patients, made full clinical assessment; WH done the experimental work, IT done the bioinformatics analysis. All authors reviewed and corrected the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asem M. Alkhateeb.

Ethics declarations

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Conflict of interest

Authors declare no conflict of interest.

Additional information

Synopsis : Novel mutations in WWOX, RARS2 and C10orf2 exemplify the uniqueness of the population studied and represent new mechanisms of protein disruption and disease.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhateeb, A.M., Aburahma, S.K., Habbab, W. et al. Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous Arab families with intellectual disability. Metab Brain Dis 31, 901–907 (2016). https://doi.org/10.1007/s11011-016-9827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9827-9

Keywords

Navigation