Skip to main content

Advertisement

Log in

Electroacupuncture improves cognitive deficits associated with AMPK activation in SAMP8 mice

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Perturbations of brain energy metabolism are involved in Alzheimer’s disease (AD). Adenosine monophosphate-activated kinase (AMPK) is a master energy sensor that monitors the levels of key energy metabolites. Electroacupuncture (EA) has demonstrated therapeutic potential for the treatment of AD. The effects of EA on cognitive functions and the changes of AMPK and its phosphorylated form (p-AMPK) expression were investigated in senescence-accelerated mouse prone 8 (SAMP8) mice. Cognitive function of SAMP8 mice was assessed using Morris water maze test after EA treatment. Then mice were sacrificed for immunohistochemistry and western blot analysis. EA stimulation significantly alleviated memory impairment of AD mice, and increased the levels of p-AMPK in the hippocampus. These results suggest that EA improved cognitive function associated with AMPK activation, AMPK may be a molecular target of EA in treating AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Blalock EM, Grondin R, Chen KC, Thibault O, Thibault V, Pandya JD, Dowling A, Zhang Z, Sullivan P, Porter NM, Landfield PW (2010) Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys. J Neurosci 30:6058–6071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai Z, Yan LJ, Li K, Quazi SH, Zhao B (2012) Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromolecular Med 14:1–14

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Yu J, Jiang Z, Zhang X, Liu C, Peng Y, Chen F, Qu Y, Jia Y, Tian Q, Xiao C, Chu Q, Nie K, Kan B, Hu X, Han J (2008) Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice. Neurosci Lett 432:111–116

    Article  CAS  PubMed  Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104:7217–7222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DiTacchio KA, Heinemann SF, Dziewczapolski G (2014) Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. J Alzheimers Dis. doi:10.3233/JAD-141332

    Google Scholar 

  • Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K, Liu R, Wang JZ, Zhou XW (2014) AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimers Dis. doi:10.3233/JAD-140564

    Google Scholar 

  • Dumont M, Ho DJ, Calingasan NY, Xu H, Gibson G, Beal MF (2009) Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free Radic Biol Med 47:1019–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng S, Wang Q, Wang H, Peng Y, Wang L, Lu Y, Shi T, Xiong L (2010) Electroacupuncture pretreatment ameliorates hypergravity-induced impairment of learning and memory and apoptosis of hippocampal neurons in rats. Neurosci Lett 478:150–155

    Article  CAS  PubMed  Google Scholar 

  • Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591

    Article  CAS  PubMed  Google Scholar 

  • Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, Viader F, Baron JC, Eustache F, Chetelat G (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain 132:2058–2067

    Article  PubMed Central  PubMed  Google Scholar 

  • Galindo MF, Ikuta I, Zhu X, Casadesus G, Jordan J (2010) Mitochondrial biology in Alzheimer’s disease pathogenesis. J Neurochem 114:933–945

    CAS  PubMed  Google Scholar 

  • Geda YE, Roberts RO, Knopman DS, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, Tangalos EG, Petersen RC, Rocca WA (2010) Physical exercise, aging, and mild cognitive impairment: a population-based study. Arch Neurol 67:80–86

    PubMed Central  PubMed  Google Scholar 

  • Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun 380:98–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, Riepe MW, Dodel R, Leyhe T, Bertram L, Hoffmann W, Faltraco F (2011) The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol 95:718–728

    Article  PubMed  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park HJ, Park J, Kim MJ, Hong M, Yang J, Choi S, Lee H (2007) Acupuncture application for neurological disorders. Neurol Res 29(1):S49–S54

    Article  PubMed  Google Scholar 

  • Li G, Zhang X, Cheng H, Shang X, Xie H, Zhang X, Yu J, Han J (2012) Acupuncture improves cognitive deficits and increases neuron density of the hippocampus in middle-aged SAMP8 mice. Acupunct Med 30:339–345

    Article  PubMed  Google Scholar 

  • Li XY, Guo F, Zhang QM, Huo TT, Liu LX, Wei HD, Xiong LZ, Wang Q (2014) Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice. BMC Complement Altern Med. doi:10.1186/1472-6882-14-37

    Google Scholar 

  • Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, Zheng ZH, Liu CM, Wang YJ (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222:199–212

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Huang Y, Tang C, Shan B, Cui S, Yang J, Chen J, Lin R, Xiao H, Qu S, Lai X (2014) Brain areas involved in the acupuncture treatment of AD model rats: a PET study. BMC Complement Altern Med 14:178–185

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, Klann E (2014) Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta. J Neurosci 34:12230–12238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R, Stern Y, Ottman R, Tatemichi TK, Tang MX, Maestre G, Ngai C, Tycko B, Ginsberg H (1993) The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann Neurol 34:752–754

    Article  CAS  PubMed  Google Scholar 

  • Mielke JG, Nicolitch K, Avellaneda V, Earlam K, Ahuja T, Mealing G, Messier C (2006) Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behav Brain Res 175:374–382

    Article  CAS  PubMed  Google Scholar 

  • Misra P (2008) AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin Ther Targets 12:91–100

    CAS  PubMed  Google Scholar 

  • Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:180–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel JR, Brewer GJ (2003) Age-related changes in neuronal glucose uptake in response to glutamate and beta-amyloid. J Neurosci Res 72:527–536

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118:460–474

    Article  CAS  PubMed  Google Scholar 

  • Spasic MR, Callaerts P, Norga KK (2009) AMP-activated protein kinase (AMPK) molecular crossroad for metabolic control and survival of neurons. Neuroscientist 15:309–316

    Article  CAS  PubMed  Google Scholar 

  • Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, Vitolo OV, Hedden T, Becker JA, Rentz DM, Selkoe DJ, Johnson KA (2010) Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med 12:27–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  • Vingtdeux V, Davies P, Dickson DW, Marambaud P (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathol 121:337–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Peng Y, Chen S, Gou X, Hu B, Du J, Lu Y, Xiong L (2009) Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system. Stroke 40:2157–2164

    Article  PubMed  Google Scholar 

  • Wang F, Zhong H, Li X, Peng Y, Kinden R, Liang W, Li X, Shi M, Liu L, Wang Q, Xiong L (2014) Electroacupuncture attenuates reference memory impairment associated with astrocytic NDRG2 suppression in APP/PS1 transgenic mice. Mol Neurobiol 50:305–313

    Article  CAS  PubMed  Google Scholar 

  • Wimo A, Jonsson L, Bond J, Prince M, Winblad B (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9:1–11

    Article  PubMed  Google Scholar 

  • Winocur G, Greenwood CE (1999) The effects of high fat diets and environmental influences on cognitive performance in rats. Behav Brain Res 101:153–161

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Jin J (2008) Effect of acupuncture given at the HT 7, ST 36, ST 40 and KI 3 acupoints on various parts of the brains of Alzheimer’s disease patients. Acupunct Electrother Res 33:9–17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by project 81102625 supported by National Natural Science Foundation of China and project 2012 J05154 supported by Natural Science Foundation of Fujian Province Grants. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Guo, W., Zheng, X. et al. Electroacupuncture improves cognitive deficits associated with AMPK activation in SAMP8 mice. Metab Brain Dis 30, 777–784 (2015). https://doi.org/10.1007/s11011-014-9641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9641-1

Keywords

Navigation