Skip to main content

Advertisement

Log in

Changes in cerebral oxidative metabolism in patients with acute liver failure

Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Acute liver failure patients with a persistence of hyperammonemia are at an increased risk of intracranial hypertension due to development of brain oedema. In vitro studies of brain tissue and cell cultures that indicates that exposure to ammonium inhibits enzymatic activity in the tricarboxylic acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine concentration, as well as to some of the adenosine triphosphate degradation products. However, clinical observations of cerebral exchange rates of oxygen, glucose, lactate and amino acids challenge the interpretation of these findings. In this review the conflicting data of cerebral metabolism during acute liver failure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Abramson NS, Safar P, Detre KM, Kelsey SF, Monroe J, Reinmuth O et al (1985) Neurologic recovery after cardiac arrest: effect of duration of ischemia. Brain Resuscitation Clinical Trial I Study Group. Crit Care Med 13:930–931

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1991) Microdialysis–principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  • Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709

    PubMed  CAS  Google Scholar 

  • Vespa PM, O'Phelan K, McArthur D, Miller C, Eliseo M, Hirt D et al (2007) Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med 35:1153–1160

    Article  PubMed  Google Scholar 

  • Bjerring PN, Hauerberg J, Jorgensen L, Frederiksen HJ, Tofteng F, Hansen BA et al (2010) Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure. J Hepatol 53:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminsky Y, Grau E, Minana MD, Marcaida G, Grisolia S et al (1994) Brain Atp depletion induced by acute ammonia intoxication in rats is mediated by activation of the Nmda receptor and Na+, K + −Atpase. J Neurochem 63:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Zwingmann C, Butterworth R (2005) An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Neurochem Int 47:19–30

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar AR, Rao KV, Murthy C, Norenberg MD (2006) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48:623–628

    Article  PubMed  CAS  Google Scholar 

  • Ott P, Clemmesen O, Larsen FS (2005) Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 47:13–18

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2004) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36:303–307

    Article  PubMed  CAS  Google Scholar 

  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653

    Article  PubMed  CAS  Google Scholar 

  • Bernal W, Hall C, Karvellas CJ, Auzinger G, Sizer E, Wendon J (2007) Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology 46:1844–1852

    Article  PubMed  CAS  Google Scholar 

  • Tofteng F, Hauerberg J, Hansen BA, Pedersen CB, Jorgensen L, Larsen FS (2006) Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 26:21–27

    Article  PubMed  CAS  Google Scholar 

  • Bjerring PN, Hauerberg J, Frederiksen HJ, Jorgensen L, Hansen BA, Tofteng F et al (2008) Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care 9:3–7

    Article  PubMed  Google Scholar 

  • Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76:72–80

    Article  PubMed  CAS  Google Scholar 

  • Bjerring PN, Hauerberg J, Frederiksen HJ, Nielsen HB, Clemmesen JO, Larsen FS (2012) The effect of fractionated plasma separation and adsorption on cerebral amino acid metabolism and oxidative metabolism during acute liver failure. J Hepatol

  • Strauss GI, Moller K, Larsen FS, Kondrup J, Knudsen GM (2003) Cerebral glucose and oxygen metabolism in patients with fulminant hepatic failure. Liver Transpl 9:1244–1252

    Article  PubMed  Google Scholar 

  • Tofteng F, Larsen FS (2002) Monitoring extracellular concentrations of lactate, glutamate, and glycerol by in vivo microdialysis in the brain during liver transplantation in acute liver failure. Liver Transpl 8:302–305

    Article  PubMed  Google Scholar 

  • Wendon JA, Harrison PM, Keays R, Williams R (1994) Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 19:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Schmidt LE, Tofteng F, Strauss GI, Larsen FS (2004) Effect of treatment with the Molecular Adsorbents Recirculating System on arterial amino acid levels and cerebral amino acid metabolism in patients with hepatic encephalopathy. Scand J Gastroenterol 39:974–980

    Article  PubMed  CAS  Google Scholar 

  • Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L (2009) Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 29:1780–1789

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2002) Purines and neuroprotection. Adv Exp Med Biol 513:249–280

    Article  PubMed  CAS  Google Scholar 

  • Lutz PL, Nilsson GE, Prentice HM (2003) The brain without oxygen causes of failure--physiological and molecular mechanisms for survival, 3. ed Kluwer Academic Pub

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Bjerring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerring, P.N., Larsen, F.S. Changes in cerebral oxidative metabolism in patients with acute liver failure. Metab Brain Dis 28, 179–182 (2013). https://doi.org/10.1007/s11011-012-9346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9346-2

Keywords

Navigation