Skip to main content

Advertisement

Log in

100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hyponatremic encephalopathy is a potentially lethal condition with numerous reports of death or permanent neurological injury. The optimal treatment for hyponatremic encephalopathy remains controversial. We have introduced a unified approach to the treatment of hyponatremic encephalopathy which uses 3% NaCl (513 mEq/L) bolus therapy. Any patient with suspected hyponatremic encephalopathy should receive a 2 cc/kg bolus of 3% NaCl with a maximum of 100 cc, which could be repeated 1–2 times if symptoms persist. The approach results in a controlled and immediate rise in serum sodium with little risk of inadvertent overcorrection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arieff AI, Ayus JC et al (1992) Hyponatraemia and death or permanent brain damage in healthy children. BMJ 304(6836):1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Arieff AI, Kozniewska E et al (1995) Age, gender, and vasopressin affect survival and brain adaptation in rats with metabolic encephalopathy. Am J Physiol 268(5 Pt 2):R1143–R1152

    CAS  PubMed  Google Scholar 

  • Ayus JC, Achinger SG et al (2008) Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol 295(3):F619–F624

    Article  CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff A et al (2005) Hyponatremia in marathon runners. N Engl J Med 353(4):427–428

    Article  CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (1993) Pathogenesis and prevention of hyponatremic encephalopathy. Endocrinol Metab Clin North Am 22(2):425–446

    CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (1995) Pulmonary complications of hyponatremic encephalopathy. Noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest 107(2):517–521

    Article  CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (1996) Brain damage and postoperative hyponatremia: the role of gender. Neurology 46(2):323–328

    CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (1999) Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 281(24):2299–2304

    Article  CAS  PubMed  Google Scholar 

  • Ayus JC, Arieff AI (2002a) Therapy of dDAVP-associated hyponatremia can lead to permanent brain damage. J Am Soc Nephrol 13:671A

    Google Scholar 

  • Ayus, J. C. and A. I. Arieff (2002b) Therapy of dDAVP-associated hyponatremia can lead to permanent brain damage. J Am Soc Nephrol 13: PUB002.

  • Ayus JC, Armstrong D et al (2006) Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int 69(8):1319–1325

    CAS  PubMed  Google Scholar 

  • Ayus JC, Krothapalli RK et al (1987) Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective study. N Engl J Med 317(19):1190–1195

    CAS  PubMed  Google Scholar 

  • Ayus JC, Krothapalli RK et al (1985) Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am J Physiol 248(5 Pt 2):F711–F719

    CAS  PubMed  Google Scholar 

  • Ayus JC, Krothapalli RK et al (1989) Symptomatic hyponatremia in rats: effect of treatment on mortality and brain lesions. Am J Physiol 257(1 Pt 2):F18–F22

    CAS  PubMed  Google Scholar 

  • Ayus JC, Varon J et al (2000) Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 132(9):711–714

    CAS  PubMed  Google Scholar 

  • Ayus JC, Wheeler JM et al (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117(11):891–897

    CAS  PubMed  Google Scholar 

  • Campbell GA, Rosner MH (2008) The agony of ecstasy: MDMA (3,4-methylenedioxymethamphetamine) and the kidney. Clin J Am Soc Nephrol 3(6):1852–1860

    Article  CAS  PubMed  Google Scholar 

  • Decaux G, Soupart A (2003) Treatment of symptomatic hyponatremia. Am J Med Sci 326(1):25–30

    Article  PubMed  Google Scholar 

  • Decaux G, Soupart A et al (2008) Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 371(9624):1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Dellabarca C, Servilla KS et al (2005) Osmotic myelinolysis following chronic hyponatremia corrected at an overall rate consistent with current recommendations. Int Urol Nephrol 37(1):171–173

    Article  PubMed  Google Scholar 

  • Doczi T, Laszlo FA et al (1984) Involvement of vasopressin in brain edema formation: further evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery 14(4):436–441

    Article  CAS  PubMed  Google Scholar 

  • Gankam Kengne F, Soupart A et al (2009) Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats. Kidney Int 76(6):614–621

    Article  PubMed  Google Scholar 

  • Georgy V, Mullhi D et al (2007) Central pontine myelinolysis following ‘optimal’ rate of correction of hyponatraemia with a good clinical outcome. Ann Clin Biochem 44(Pt 5):488–490

    Article  CAS  PubMed  Google Scholar 

  • Germiniani FM, Roriz M et al (2002) [Central pontine and extra-pontine myelinolysis in an alcoholic patient without hydro-electrolyte disturbances: case report]. Arq Neuropsiquiatr 60(4):1030–1033

    PubMed  Google Scholar 

  • Goldszmidt MA, Iliescu EA (2000) DDAVP to prevent rapid correction in hyponatremia. Clin Nephrol 53(3):226–229

    CAS  PubMed  Google Scholar 

  • Hagiwara K, Okada Y et al (2008) Extensive central and extrapontine myelinolysis in a case of chronic alcoholism without hyponatremia: a case report with analysis of serial MR findings. Intern Med 47(5):431–435

    Article  PubMed  Google Scholar 

  • Hew-Butler T, Ayus JC et al (2008) Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin J Sport Med 18(2):111–121

    Article  PubMed  Google Scholar 

  • Hoorn EJ, Lindemans J et al (2006) Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant 21(1):70–76

    Article  PubMed  Google Scholar 

  • Huda MS, Boyd A et al (2006) Investigation and management of severe hyponatraemia in a hospital setting. Postgrad Med J 82(965):216–219

    Article  CAS  PubMed  Google Scholar 

  • Kalantar-Zadeh K, Nguyen MK et al (2006) Fatal hyponatremia in a young woman after ecstasy ingestion. Nat Clin Pract Nephrol 2(5):283–288, quiz 289

    Article  PubMed  Google Scholar 

  • Kimelberg HK (2004) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45(4):511–519

    Article  CAS  PubMed  Google Scholar 

  • Kozniewska E, Gadamski R et al (2008) Morphological changes in the brain during experimental hyponatraemia. Do vasopressin and gender matter? Folia Neuropathol 46(4):271–277

    PubMed  Google Scholar 

  • Lauriat SM, Berl T (1997) The hyponatremic patient: practical focus on therapy. J Am Soc Nephrol 8(10):1599–1607

    CAS  PubMed  Google Scholar 

  • McClellan MD, Dauber IM et al (1989) Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol 67(3):1185–1191

    CAS  PubMed  Google Scholar 

  • Montanana PA, iAlapont Modesto et al (2008) The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatremia in pediatrics: a randomized, controlled open study. Pediatr Crit Care Med 9(6):589–597

    Article  PubMed  Google Scholar 

  • Moritz ML, Ayus JC (2001) La Crosse encephalitis in children. N Engl J Med 345(2):148–149

    Article  CAS  PubMed  Google Scholar 

  • Moritz ML, Ayus JC (2003) Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics 111(2):227–230

    Article  PubMed  Google Scholar 

  • Moritz ML, Ayus JC (2005) Preventing neurological complications from dysnatremias in children. Pediatr Nephrol 20(12):1687–1700

    Article  PubMed  Google Scholar 

  • Moritz ML, Ayus JC (2008) Exercise-associated hyponatremia: why are athletes still dying? Clin J Sport Med 18(5):379–381

    Article  PubMed  Google Scholar 

  • Moritz, M. L. and J. C. Ayus (2009) New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatr Nephrol [Epub ahead of print].

  • Moritz ML, Carlos Ayus J (2007) Hospital-acquired hyponatremia-why are hypotonic parenteral fluids still being used? Nat Clin Pract Nephrol 3(7):374–382

    Article  CAS  PubMed  Google Scholar 

  • Nagaishi A, Yukitake M et al (2007) [A case of alcoholic with vitamin B12 deficiency presenting central pontine and extrapontine myelinolysis on MRI]. Rinsho Shinkeigaku 47(4):173–176

    PubMed  Google Scholar 

  • Neville, K. A., D. J. Sandeman, et al. (2009) Prevention of Hyponatremia during Maintenance Intravenous Fluid Administration: A Prospective Randomized Study of Fluid Type versus Fluid Rate. J Pediatr 156(2):313–319. [Epub 2009 Oct 9].

    Google Scholar 

  • Nzerue C, Baffoe-Bonnie H et al (2002) Predicters of mortality with severe hyponatremia. J Am Soc Nephrol 13:A0728

    Google Scholar 

  • Orakzai RH, Orakzai SH et al (2008) Treating hyponatremia: how slow is safe? Central pontine myelinolysis despite appropriate correction of hyponatremia. Eur J Intern Med 19(6):e29–e31

    Article  PubMed  Google Scholar 

  • Palmer BF, Sterns RH (2009) Fluid, Electrolytes and Acid-Base Disturbances. Nephrol Self Assess Program 8(2):136–142

    Google Scholar 

  • Perianayagam A, Sterns RH et al (2008) DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol 3(2):331–336

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Jha R et al (1995) Central pontine myelinolysis following ‘slow’ correction of hyponatremia. Clin Neurol Neurosurg 97(4):340–343

    Article  CAS  PubMed  Google Scholar 

  • Savasta S, Sepe V et al (2006) Severe hyponatremia followed by extrapontine myelinolysis. Kidney Int 69(3):423

    Article  CAS  PubMed  Google Scholar 

  • Schoonman GG, Sandor PS et al (2008) Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab 28(1):198–206

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Diekmann S et al (2009) Central pontine myelinolysis despite slow sodium rise in a case of severe community-acquired hyponatraemia. Anaesth Intensive Care 37(1):117–120

    CAS  PubMed  Google Scholar 

  • Smith WS, Matthay MA (1997) Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 111(5):1326–1333

    Article  CAS  PubMed  Google Scholar 

  • Soupart A, Penninckx R et al (1992) Treatment of chronic hyponatremia in rats by intravenous saline: comparison of rate versus magnitude of correction. Kidney Int 41(6):1662–1667

    Article  CAS  PubMed  Google Scholar 

  • Sterns RH, Nigwekar SU et al (2009) The treatment of hyponatremia. Semin Nephrol 29(3):282–299

    Article  CAS  PubMed  Google Scholar 

  • Sundgren PC, Reinstrup P et al (2002) Value of conventional, and diffusion-and perfusion weighted MRI in the management of patients with unclear cerebral pathology, admitted to the intensive care unit. Neuroradiology 44(8):674–680

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Onbas O (2004) Central pontine myelinolysis central pontine myelinolysis manifesting with massive myoclonus. Pediatr Neurol 31(1):64–66

    Article  PubMed  Google Scholar 

  • Vajda Z, Pedersen M et al (2001) Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery 49(3):697–704, discussion 704–5

    Article  CAS  PubMed  Google Scholar 

  • Verbalis JG, Martinez AJ (1991) Neurological and neuropathological sequelae of correction of chronic hyponatremia. Kidney Int 39(6):1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Vexler ZS, Ayus JC et al (1994) Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest 93(1):256–264

    Article  CAS  PubMed  Google Scholar 

  • Yoon B, Shim YS et al (2008) Central pontine and extrapontine myelinolysis after alcohol withdrawal. Alcohol Alcohol 43(6):647–649

    CAS  PubMed  Google Scholar 

  • Yung M, Keeley S (2009) Randomised controlled trial of intravenous maintenance fluids. J Paediatr Child Health 45(1–2):9–14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Moritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, M.L., Ayus, J.C. 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis 25, 91–96 (2010). https://doi.org/10.1007/s11011-010-9173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-010-9173-2

Keywords

Navigation