Skip to main content

Advertisement

Log in

Signaling factors in the mechanism of ammonia neurotoxicity

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Mechanisms involved in hepatic encephalopathy (HE) still remain poorly understood. It is generally accepted that ammonia plays a major role in this disorder, and that astrocytes represent the principal target of ammonia neurotoxicity. In recent years, studies from several laboratories have uncovered a number of factors and pathways that appear to be critically involved in the pathogenesis of this disorder. Foremost is oxidative and nitrosative stress (ONS), which is largely initiated by an ammonia-induced increase in intracellular Ca2+. Such increase in Ca2+ activates a number of enzymes that promote the synthesis of reactive oxygen-nitrogen species, including constitutive nitric oxide synthase, NADPH oxidase and phospholipase A2. ONS subsequently induces the mitochondrial permeability transition, and activates mitogen-activated protein kinases and the transcription factor, nuclear factor-kappaB (NF-κB). These factors act to generate additional reactive oxygen-nitrogen species, to phosphorylate various proteins and transcription factors, and to cause mitochondrial dysfunction. This article reviews the role of these factors in the mechanism of HE and ammonia toxicity with a focus on astrocyte swelling and glutamate uptake, which are important consequences of ammonia neurotoxicity. These pathways and factors provide attractive targets for identifying agents potentially useful in the therapy of HE and other hyperammonemic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E, Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nature Rev Neurosci 7:41–53

    CAS  Google Scholar 

  • Ahboucha S, Pomier-Layrargues GMO, Butterworth RF (2005) Increased brain concentrations of a neuroinhibitory steroid in human hepatic encephalopathy. Ann Neurol 58:169–170

    PubMed  CAS  Google Scholar 

  • Ahn KS, Sethi G, Aggarwal BB (2007) Nuclear factor-kappa B: from clone to clinic. Curr Molec Med 7:619–637

    CAS  Google Scholar 

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    PubMed  CAS  Google Scholar 

  • Anderson CM, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26:340–344

    PubMed  CAS  Google Scholar 

  • Bai G, Rama Rao KV, Murthy ChRK, Panickar KS, Jayakumar AR, Norenberg MD (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66:981–991

    PubMed  CAS  Google Scholar 

  • Baldwin AS Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    PubMed  CAS  Google Scholar 

  • Bassett ML, Mullen KD, Scholz B, Fenstermacher JD, Jones EA (1990) Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology 98:747–757

    PubMed  CAS  Google Scholar 

  • Bender AS, Norenberg MD (1996) Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem Res 21:567–573

    PubMed  CAS  Google Scholar 

  • Bender AS, Woodbury DM, White HS (1989) β-DL-methylene-aspartate, an inhibitor of aspartate aminotransferase, potently inhibits L-glutamate uptake into astrocytes. Neurochem Res 14:641–646

    PubMed  CAS  Google Scholar 

  • Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical reappraisal. J Bioenerg Biomembr 28:131–138

    PubMed  CAS  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blalchy-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    PubMed  CAS  Google Scholar 

  • Bismuth H, Samuel D, Castaing D, Williams R, Pereira SP (1996) Liver transplantation in Europe for patients with acute liver failure. Semin Liver Dis 16:415–425

    PubMed  CAS  Google Scholar 

  • Blei AT (2005) The pathophysiology of brain edema in acute liver failure. Neurochem Int 47:71–77

    PubMed  CAS  Google Scholar 

  • Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    PubMed  CAS  Google Scholar 

  • Brahma B, Forman RE, Stewart EE, Nicholson C, Rice ME (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Bruck R, Aeed H, Shirin H, Matas Z, Zaidel L, Avni Y, Halpern Z (1999) The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J Hepatol 31:27–38

    PubMed  CAS  Google Scholar 

  • Butterworth RF (2000) The astrocytic ("peripheral-type") benzodiazepine receptor: role in the pathogenesis of portal-systemic encephalopathy. Neurochem Int 36:411–416

    PubMed  CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    PubMed  CAS  Google Scholar 

  • Capocaccia L, Angelico M (1991) Fulminant hepatic failure: Clinical features, etiology, epidemiology, and current management. Dig Dis Sci 36:775–779

    PubMed  CAS  Google Scholar 

  • Chan PH, Yurko M, Fishman RA (1982) Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J Neurochem 38:525–531

    PubMed  CAS  Google Scholar 

  • Chan PH, Longar S, Chen S, Yu AC, Hillered L, Chu L, Imaizumi S, Pereira B, Moore K, Woolworth V, Fishman RA (1989) The role of arachidonic acid and oxygen radical metabolites in the pathogenesis of vasogenic brain edema and astrocytic swelling. Ann N Y Acad Sci 559:237–247

    PubMed  CAS  Google Scholar 

  • Chen CJ, Liao SL, Kuo JS (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75:1557–1565

    PubMed  CAS  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    PubMed  CAS  Google Scholar 

  • Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653

    PubMed  CAS  Google Scholar 

  • Conn HO, Lieberthal ML (1978) The Hepatic Coma Syndromes and Lactulose. Williams and Wilkins, Baltimore

    Google Scholar 

  • Czaja MJ, Liu H, Wang Y (2003) Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology 37:1405–1413

    PubMed  CAS  Google Scholar 

  • De Knegt RJ, Schalm SW, Van Der Rijt CCD, Fekkes D, Dalm E, Hekking-Weyma I (1994) Extracellular brain glutamate during acute liver failure and during acute hyperammonemia simulating acute liver failure: An experimental study based on in vivo brain dialysis. J Hepatol 20:19–26

    PubMed  Google Scholar 

  • Dixit V, Chang TM (1990) Brain edema and the blood brain barrier in galactosamine-induced fulminant hepatic failore rats. An animal model for evaluation of liver support systems. ASAIO Trans 36:21–27

    CAS  Google Scholar 

  • Drejer J, Larsson OM, Schousboe A (1982) Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res 47:259–269

    PubMed  CAS  Google Scholar 

  • Duan Y, Gross RA, Sheu SS (2007) Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity. J Physiol 585:741–758

    PubMed  CAS  Google Scholar 

  • Ede RJ, Williams R (1986) Hepatic encephalopathy and cerebral edema. Semin Liver Dis 6:107–118

    PubMed  CAS  Google Scholar 

  • English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23:40–45

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69:889–901

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SM, Cooper AJ, Hertz L (1988) Effects of ammonia and beta-methylene-DL-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J Neurochem 51:1197–1203

    PubMed  CAS  Google Scholar 

  • Gove CD, Hughes RD, Ede RJ, Williams R (1997) Regional cerebral edema and chloride space in galactosamine-induced liver failure in rats. Hepatology 25:295–301

    PubMed  CAS  Google Scholar 

  • Görg B, Foster N, Reinehr R, Bidmon HJ, Hongen A, Häussinger D, Schliess F (2003) Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37:334–342

    PubMed  Google Scholar 

  • Guerrini VH (1994) Effect of antioxidants on ammonia induced CNS-renal pathobiology in sheep. Free Radic Res 21:35–43

    PubMed  CAS  Google Scholar 

  • Haghighat N, McCandless DW (1997) Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells in vitro. Metab Brain Dis 12:287–298

    PubMed  CAS  Google Scholar 

  • Haghighat N, McCandless DW, Geraminegad P (2000) The effect of ammonium chloride on metabolism of primary neurons and neuroblastoma cells in vitro. Metab Brain Dis 15:151–162

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    PubMed  CAS  Google Scholar 

  • Häussinger D, Schliess F (2005) Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int 47:64–70

    PubMed  Google Scholar 

  • Häussinger D, Görg B, Reinehr R, Schliess F (2005) Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 20:285–294

    PubMed  Google Scholar 

  • Hazell AS, Butterworth RF (1999) Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222:99–112

    PubMed  CAS  Google Scholar 

  • Hernández-Fonseca K, Cárdenas-Rodríguez N, Pedraza-Chaverri J, Massieu L (2008) Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal. J Neurosci Res 86:1768–1780

    PubMed  Google Scholar 

  • Hoofnagle JH, Carithers RL Jr., Shapiro C, Ascher N (1995) Fulminant hepatic failure: summary of a workshop. Hepatology 21:240–252

    PubMed  CAS  Google Scholar 

  • Horowitz ME, Schafer DF, Molnar P, Jones EA, Blasberg RG, Patlak CS, Waggoner J, Fenstermacher JD (1983) Increased blood-brain transfer in a rabbit model of acute liver failure. Gastroenterology 84:1003–1011

    PubMed  CAS  Google Scholar 

  • Israel A (1995) A role for phosphorylation and degradation in the control of NF-kappa B activity. Trends Genet 11:203–205

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Roig-Cantisano A, Dombro RS, Norenberg MD (1995) Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res 705:345–348

    PubMed  CAS  Google Scholar 

  • Jalan R, Pollok A, Shah S, Madhavan K, Simpson KJ (2002) Liver derived pro-inflammatory cytokines may be important in producing intracranial hypertension in acute liver failure. J Hepatol 37:536–538

    PubMed  CAS  Google Scholar 

  • Jalan R, Olde Damink SW, Hayes PC, Deutz NE, Lee A (2004) Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol 41:613–620

    PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    PubMed  CAS  Google Scholar 

  • Jayakumar AR, Panickar K, Norenberg MD (2002) Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J Neurochem 83:1226–1234

    PubMed  CAS  Google Scholar 

  • Jayakumar AR, Panickar KS, Murthy ChRK, Norenberg MD (2006) Oxidative stress and MAPK phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784

    PubMed  CAS  Google Scholar 

  • Jones EA, Weissenborn K (1997) Neurology and the liver. J Neurol Neurosurg Psychiatry 63:279–293

    PubMed  CAS  Google Scholar 

  • Kato M, Hughes RD, Keays RT, Williams R (1992) Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066

    PubMed  CAS  Google Scholar 

  • Keyser DO, Pellmar TC (1994) Synaptic transmission in the hippocampus: critical role for glial cells. Glia 10:237–243

    PubMed  CAS  Google Scholar 

  • Kimelberg HK, Jalonen T, Walz W (1993) Regulation of the brain microenvironment: transmitters and ions. In: Murphy S (ed) Astrocytes: Pharmacology and Function. Academic, San Diego, pp 193–228

    Google Scholar 

  • Kleinert H, Pautz A, Linker K, Schwarz PM (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500:255–266

    PubMed  CAS  Google Scholar 

  • Knecht K, Michalak A, Rose C, Rothstein JD, Butterworth RF (1997) Decreased glutamate transporter (GLT-1) expression in frontal cortex of rats with acute liver failure. Neurosci Lett 229:201–203

    PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminsky Y, Kaminsky A, Valencia M, Lee L, Hermenegildo C, Felipo V (1997) Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Rad Res 27:637–644

    CAS  Google Scholar 

  • Kosenko E, Kaminski Y, Lopata O, Muravyov N, Felipo V (1999) Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Rad Biol Med 26:1369–1374

    PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    PubMed  CAS  Google Scholar 

  • Kramer RM, Stephenson DT, Roberts EF, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) and lipid mediator release in the brain. J Lipid Mediat Cell Signal 14:3–7

    PubMed  Google Scholar 

  • Kramer L, Tribl B, Gendo A, Zauner C, Schneider B, Ferenci P, Madl C (2000) Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31:30–34

    PubMed  CAS  Google Scholar 

  • Krueger KE, Papadopoulos V (1992) Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis. Annu Rev Pharmacol Toxicol 32:211–237

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  • Livingstone AS, Potvin M, Goresky CA, Finlayson MH, Hinchey EJ (1977) Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology 73:697–704

    PubMed  CAS  Google Scholar 

  • Mans AM, Biebuyck JF, Hawkins RA (1983) Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am J Physiol 245:C74–C77

    PubMed  CAS  Google Scholar 

  • Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    PubMed  CAS  Google Scholar 

  • Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    PubMed  CAS  Google Scholar 

  • Martin H, Voss K, Hufnagl P, Wack R, Wassilew G (1987) Morphometric and densitometric investigations of protoplasmic astrocytes and neurons in human hepatic encephalopathy. Exp Pathol 32:241–250

    PubMed  CAS  Google Scholar 

  • Martinez AJ (1968) Electron microscopy in human hepatic encephalopathy. Acta Neuropathol (Berl) 11:82–86

    CAS  Google Scholar 

  • Master S, Gottstein J, Blei AT (1999) Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30:876–880

    PubMed  CAS  Google Scholar 

  • Matkowskyj KA, Marrero JA, Carroll RE, Danilkovich AV, Green RM, Benya RV (1999) Azoxymethane-induced fulminant hepatic failure in C57BL/6J mice: characterization of a new animal model. Am J Physiol 277:G455–462

    PubMed  CAS  Google Scholar 

  • McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89:3170–3174

    PubMed  CAS  Google Scholar 

  • Mennerick S, Zorumski CF (1994) Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368:59–62

    PubMed  CAS  Google Scholar 

  • Moroni F, Lombardi G, Moneti G, Cortesini C (1983) The release and the neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J Neurochem 40:850–854

    PubMed  CAS  Google Scholar 

  • Muralikrishna AR, Hatcher JF (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Rad Biol Med 40:376–387

    Google Scholar 

  • Murthy CR, Hertz L (1988) Pyruvate decarboxylation in astrocytes and in neurons in primary cultures in the presence and the absence of ammonia. Neurochem Res 13:57–61

    PubMed  CAS  Google Scholar 

  • Murthy ChRK, Rama Rao KV, Bai G, Norenberg MD (2001) Ammonia induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 66:282–288

    PubMed  CAS  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    PubMed  CAS  Google Scholar 

  • Nguyen JH, Yamamoto S, Steers J, Sevlever D, Lin W, Shimojima N, Castanedes-Casey M, Genco P, Golde T, Richelson E, Dickson D, McKinney M, Eckman CB (2006) Matrix metalloproteinase-9 contributes to brain extravasation and edema in fulminant hepatic failure mice. J Hepatol 44:1105–1114

    PubMed  CAS  Google Scholar 

  • Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    CAS  Google Scholar 

  • Norenberg MD (1981) The astrocyte in liver disease. In: Fedoroff S, Hertz L (eds) Advances in Cellular Neurobiology, Vol. 2. Academic Press, New York, pp 303–352

    Google Scholar 

  • Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33

    PubMed  CAS  Google Scholar 

  • Norenberg MD (1998) Astroglial dysfunction in hepatic encephalopathy. Metab Brain Dis 13:319–335

    PubMed  CAS  Google Scholar 

  • Norenberg MD (2001) Astrocytes and ammonia in hepatic encephalopathy. In: de Vellis J (ed) Astrocytes in the Aging Brain. Humana Press, Totowa, NJ, pp 477–496

    Google Scholar 

  • Norenberg MD, Rao KV (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50:983–997

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Huo ZF, Neary JT, Roig-Cantesano A (1997) The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: Relation to energy metabolism and glutamatergic neurotransmission. Glia 21:124–133

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2003) The mitochondrial permeability transition in ammonia neurotoxicity. In: Jones EA, Meijer AF, Chamuleau RA (eds) Hepatic Encephalopathy and Nitrogen Metabolism. Kluwer, Dordtrecht, pp 267–285

    Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2004a) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36:303–307

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV (2004b) Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19:313–329

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20:303–318

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2006) The peripheral benzodiazepine receptor and neurosteroids in the pathogenesis of hepatic encephalopathy and ammonia neurotoxicity. In: Haussinger D (ed) Hepatic Encephalopathy and Nitrogen Metabolism. Kluver, Dordtrecht, pp 143–159

    Google Scholar 

  • Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22:219–234

    PubMed  CAS  Google Scholar 

  • O’Beirne JP, Chouhan M, Hughes RD (2006) The role of infection and inflammation in the pathogenesis of hepatic encephalopathy and cerebral edema in acute liver failure. Nature Clin Pract Gastroenterol Hepatol 3:118–119

    Google Scholar 

  • Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F, Arroliga AC, Mullen KD (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    PubMed  CAS  Google Scholar 

  • Panickar KS, Jayakumar AR, Rama Rao KV, Norenberg MD (2007) Downregulation of the 18-kDa translocator protein: effects on the ammonia-induced mitochondrial permeability transition and cell swelling in cultured astrocytes. Glia 55:1720–1727

    PubMed  CAS  Google Scholar 

  • Papadopoulos V, Brown AS (1995) Role of the peripheral-type benzodiazepine receptor and the polypeptide diazepam binding inhibitor in steroidogenesis. J Steroid Biochem Mol Biol 53:103–110

    PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    PubMed  CAS  Google Scholar 

  • Piani D, Frei K, Pfister H-W, Fontana A (1993) Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol 48:99–104

    PubMed  CAS  Google Scholar 

  • Pichili VBR, Rama Rao KV, Jayakumar AR, Norenberg MD (2007) Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity. Glia 55:801–809

    PubMed  CAS  Google Scholar 

  • Qureshi K, Rao KVR, Qureshi IA (1998) Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamplase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res 23:855–861

    PubMed  CAS  Google Scholar 

  • Rama Rao KV, Norenberg MD (2001) Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 16:67–78

    Google Scholar 

  • Rama Rao KV, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338

    Google Scholar 

  • Rama Rao KV, Chen M, Simard J, Norenberg MD (2003) Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res 74:891–897

    PubMed  CAS  Google Scholar 

  • Rama Rao KV, Jayakumar AR, Norenberg MD (2005) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47:31–38

    PubMed  CAS  Google Scholar 

  • Ransom BR, Sontheimer H (1992) The neurophysiology of glial cells. J Clin Neurophysiol 9:224–251

    PubMed  CAS  Google Scholar 

  • Rao VLR, Murthy ChRK, Butterworth RF (1992) Glutamatergic synaptic dysfunction in hyperammonemic syndromes. Metab Brain Dis 7:1–20

    PubMed  CAS  Google Scholar 

  • Rao KVR, Mawal YR, Qureshi IA (1997) Progressive decrease of cerebral cytochrome c oxidase activity in sparse-fur mice: Role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci Lett 224:83–86

    PubMed  CAS  Google Scholar 

  • Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F, Häussinger D (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55:758–771

    PubMed  Google Scholar 

  • Risau W, Wolburg H (1990) Development of the blood-brain barrier. Trends Neurosci 13:174–178

    PubMed  CAS  Google Scholar 

  • Rose C, Kresse W, Kettenmann H (2005) Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem 280:20937–20944

    PubMed  CAS  Google Scholar 

  • Schliess F, Görg B, Häussinger D (2006) Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol Chem 387:1363–1370

    PubMed  CAS  Google Scholar 

  • Schliess F, Görg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Häussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16:739–741

    PubMed  CAS  Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45

    PubMed  CAS  Google Scholar 

  • Scorrano L, Penzo D, Petronilli V V, Pagano F, Bernardi P (2000) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for TNF-alpha apoptotic signaling. J Biol Chem 276:12035–12040

    Google Scholar 

  • Sharma P (1996) Effect of ascorbic acid on hyperoxic rat astrocytes. Neuroscience 72:391–397

    PubMed  CAS  Google Scholar 

  • Sheline CT, Wei L (2006) Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 140:235–246

    PubMed  CAS  Google Scholar 

  • Sinke AP, Jayakumar AR, Panickar KS, Moriyama M, Reddy PV, Norenberg MD (2008) NFκB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem 106:2302–2311

    PubMed  CAS  Google Scholar 

  • Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL (2002) GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 68:730–737

    PubMed  CAS  Google Scholar 

  • Stancovski I, Baltimore D (1997) NF-kappaB activation: the I kappaB kinase revealed? Cell 91:299–302

    PubMed  CAS  Google Scholar 

  • Staub F, Winkler A, Peters J, Kempski O, Kachel V, Baethmann A (1994) Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J Cereb Blood Flow Metab 14:1030–1039

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Rad Biol Med 22:269–285

    PubMed  CAS  Google Scholar 

  • Swain MS, Blei AT, Butterworth RF, Kraig RP (1991) Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am J Physiol Regul Integr Comp Physiol 261:R1491–R1496

    CAS  Google Scholar 

  • Szerb JC, Butterworth RF (1992) Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog Neurobiol 39:135–153

    PubMed  CAS  Google Scholar 

  • Traber PG, Dal Canto MC, Ganger D, Blei AT (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272–1277

    PubMed  CAS  Google Scholar 

  • Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216

    PubMed  Google Scholar 

  • Vaquero J, Chung C, Blei AT (2003) Brain edema in acute liver failure. A window to the pathogenesis of hepatic encephalopathy. Ann Hepatol 2:12–22

    Google Scholar 

  • Verma IM, Stevenson J (1997) IkappaB kinase: beginning, not the end. Proc Natl Acad Sci USA 94:11758–11760

    PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  • Voorhies TM, Ehrlich ME, Duffy TE, Petito CK, Plum F (1983) Acute hyperammonemia in the young primate. Physiologic and neuropathological correlates. Pediatr Res 17:970–975

    CAS  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    PubMed  CAS  Google Scholar 

  • Walz W (1989) Role of glial cells in the regulation of the brain ion microenvironment. Prog Neurobiol 33:309–333

    PubMed  CAS  Google Scholar 

  • Warren KS, Schenker S (1964) Effect of an inhibition of glutamine synthesis (methionine sulfoximine) on ammonia toxicity and metabolism. J Lab Clin Med 64:442–449

    PubMed  CAS  Google Scholar 

  • Widmer R, Kaiser B, Engels M, Jung T, Grune T (2007) Hyperammonemia causes protein oxidation and enhanced proteasomal activity in response to mitochondria-mediated oxidative stress in rat primary astrocytes. Arch Biochem Biophys 464:1–11

    PubMed  CAS  Google Scholar 

  • Winkler AS, Baethmann A, Peters J, Kempski O, Staub F (2000) Mechanisms of arachidonic acid induced glial swelling. Brain Res Mol Brain Res 76:419–423

    PubMed  CAS  Google Scholar 

  • Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, Mani AR, Harry D, Stadlbauer V, Zou Z, Williams R, Davies C, Moore KP, Jalan R (2007) Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45:1517–1526

    PubMed  CAS  Google Scholar 

  • Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708

    PubMed  CAS  Google Scholar 

  • Zhou BG, Norenberg MD (1999) Ammonia downregulates GLAST mRNA glutamate transporter in rat astrocyte cultures. Neurosci Lett 276:145–148

    PubMed  CAS  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Merit Review from the Department of Veterans Affairs and by National Institutes of Health Grant DK063311. A.R.J is supported by the American Association for the Study of Liver Disease/American Liver Foundation Grant. We thank Max Norenberg for helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Norenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norenberg, M.D., Rama Rao, K.V. & Jayakumar, A.R. Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 24, 103–117 (2009). https://doi.org/10.1007/s11011-008-9113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9113-6

Keywords

Navigation