Skip to main content

Advertisement

Log in

Cardiovascular inflammation is reduced with methotrexate in diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes increases the risk of vascular events and mortality. While earlier type 2 diabetes trials demonstrated that intensive glucose lowering reduces microvascular complications, it is only recently that treatment with some of the newer antihyperglycemic agents has been associated with macrovascular benefits. We report herein that db/db mice concomitantly fed the Western diet and treated with the anti-inflammatory agent methotrexate display a less aggressive inflammatory (lower serum IL-1β, IL-6, SDF-1, and TNFα levels; higher circulating adiponectin, IL-12p70 and IL-10 concentrations; lower aortic VCAM-1 levels) profile than their saline-treated counterpart. Furthermore, acetylcholine-elicited endothelium-dependent vasodilatation was significantly greater in thoracic aortic segments from the former group. Collectively, the data lend support to the notion that alterations in the inflammatory system may be involved in the macrovascular benefits observed in type 2 diabetes trials and provide credence for the development of anti-inflammatory tools to lower CV risk and CV events in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A1C:

Glycated hemoglobin

CBC:

Complete blood count

CEU:

Contrast-enhanced ultrasound

CHD:

Coronary heart disease

CIRT:

Cardiovascular inflammation reduction trial

CV:

Cardiovascular

db/db:

Cg-Dock7 m+/+ Lepr db/J

db/m:

Dock7 m+/+ Lepr db

HDL:

High-density lipoprotein

IL:

Interleukin

LDL:

Low-density lipoprotein

MTX:

Methotrexate

PI:

Pulsing interval

SDF:

Stromal cell-derived factor

TNF:

Tumor necrosis factor

VCAM:

Vascular cell adhesion molecule

VLDL:

Very low-density lipoprotein

References

  1. World Health Organization (2015) Cardiovascular diseases (CVDs). In: Centre M (ed), World Health Organization, Geneva

  2. International Diabetes Federation (2015) IDF Diabetes Atlas, 7 ed. In: Federation ID (ed), International Diabetes Federation, Brussels

  3. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222. doi:10.1016/S0140-6736(10)60484-9

    Article  Google Scholar 

  4. Nwaneri C, Cooper H, Bowen-Jones D (2013) Mortality in type 2 diabetes mellitus: magnitude of the evidence from a systematic review and meta-analysis. Br J Diabetes Vasc Dis 13:192–207

    Article  Google Scholar 

  5. N. C. D. Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet doi:10.1016/S0140-6736(16)00618-8

    Google Scholar 

  6. World Health Organization (2015) Obesity and overweight. In: Centre M (ed), World Health Organization, Geneva

  7. Cardiometabolic Risk Working Group, Executive C, Leiter LA, Fitchett DH, Gilbert RE, Gupta M, Mancini GB, McFarlane PA, Ross R, Teoh H, Verma S, Anand S, Camelon K, Chow CM, Cox JL, Despres JP, Genest J, Harris SB, Lau DC, Lewanczuk R, Liu PP, Lonn EM, McPherson R, Poirier P, Qaadri S, Rabasa-Lhoret R, Rabkin SW, Sharma AM, Steele AW, Stone JA, Tardif JC, Tobe S, Ur E (2011) Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Can J Cardiol 27:e1–e33. doi:10.1016/j.cjca.2010.12.054

    Article  Google Scholar 

  8. Hayward RA, Reaven PD, Wiitala WL, Bahn GD, Reda DJ, Ge L, McCarren M, Duckworth WC, Emanuele NV and Investigators V (2015) Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med 372:2197–2206. doi:10.1056/NEJMoa1414266

    Article  CAS  PubMed  Google Scholar 

  9. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589. doi:10.1056/NEJMoa0806470

    Article  CAS  PubMed  Google Scholar 

  10. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE and Investigators E-RO (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. doi:10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  11. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsboll T and Investigators S- (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. doi:10.1056/NEJMoa1607141

    PubMed Central  Google Scholar 

  12. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, Committee LS and Investigators LT (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. doi:10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Swedberg K, Ryden L (2016) Treatment of diabetes and heart failure: joint forces. Eur Heart J 37:1535–1537. doi:10.1093/eurheartj/ehw039

    Article  PubMed  Google Scholar 

  14. Rajasekeran H, Lytvyn Y, Cherney DZ (2016) Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int 89:524–526. doi:10.1016/j.kint.2015.12.038

    Article  CAS  PubMed  Google Scholar 

  15. Drucker DJ (2016) The cardiovascular biology of glucagon-like peptide-1. Cell Metab 24:15–30. doi:10.1016/j.cmet.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E, Gupta M, Clearfield M, Libby P, Hasan AA, Glynn RJ, Ridker PM (2013) Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J 166(199–207):e15. doi:10.1016/j.ahj.2013.03.018

    Google Scholar 

  17. Guin A, Chatterjee Adhikari M, Chakraborty S, Sinhamahapatra P, Ghosh A (2013) Effects of disease modifying anti-rheumatic drugs on subclinical atherosclerosis and endothelial dysfunction which has been detected in early rheumatoid arthritis: 1-year follow-up study. Semin Arthritis Rheum 43:48–54. doi:10.1016/j.semarthrit.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  18. Westlake SL, Colebatch AN, Baird J, Kiely P, Quinn M, Choy E, Ostor AJ, Edwards CJ (2010) The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 49:295–307. doi:10.1093/rheumatology/kep366

    Article  CAS  Google Scholar 

  19. Micha R, Imamura F, Wyler von Ballmoos M, Solomon DH, Hernan MA, Ridker PM, Mozaffarian D (2011) Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 108:1362–1370. doi:10.1016/j.amjcard.2011.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeOliveira CC, Acedo SC, Gotardo EM, Carvalho Pde O, Rocha T, Pedrazzoli J, Jr. and Gambero A (2012) Effects of methotrexate on inflammatory alterations induced by obesity: an in vivo and in vitro study. Mol Cell Endocrinol 361: 92–98. doi:10.1016/j.mce.2012.03.016

    Article  PubMed  Google Scholar 

  21. Russo GT, Minutoli L, Bitto A, Altavilla D, Alessi E, Giandalia A, Romeo EL, Stagno MF, Squadrito F, Cucinotta D, Selhub J (2012) Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes. J Nutr Metab 2012:132056. doi:10.1155/2012/132056

    Article  PubMed  PubMed Central  Google Scholar 

  22. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee (2013) Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes 37:S1–S212

    Article  Google Scholar 

  23. Handelsman Y, Bloomgarden ZT, Grunberger G, Umpierrez G, Zimmerman RS, Bailey TS, Blonde L, Bray GA, Cohen AJ, Dagogo-Jack S, Davidson JA, Einhorn D, Ganda OP, Garber AJ, Garvey WT, Henry RR, Hirsch IB, Horton ES, Hurley DL, Jellinger PS, Jovanovic L, Lebovitz HE, LeRoith D, Levy P, McGill JB, Mechanick JI, Mestman JH, Moghissi ES, Orzeck EA, Pessah-Pollack R, Rosenblit PD, Vinik AI, Wyne K, Zangeneh F (2015) American Association of Clinical Endocrinologists and American College of Endocrinology—clinical practice guidelines for developing a diabetes mellitus comprehensive care plan—2015. Endocr Pract 21(Suppl 1):1–87. doi:10.4158/EP15672.GL

    Article  PubMed  PubMed Central  Google Scholar 

  24. International Diabetes Federation (2013) IDF Global Guideline for Managing Older People with Type 2 Diabetes. International Diabetes Federation, Brussels

    Google Scholar 

  25. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38:140–149. doi:10.2337/dc14-2441

    Article  PubMed  Google Scholar 

  26. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassai B, Erpeldinger S, Wright JM, Gueyffier F, Cornu C (2011) Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 343:d4169. doi:10.1136/bmj.d4169

    Article  PubMed  PubMed Central  Google Scholar 

  27. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559. doi:10.1056/NEJMoa0802743

    Article  Google Scholar 

  28. Zoungas S, Chalmers J, Neal B, Billot L, Li Q, Hirakawa Y, Arima H, Monaghan H, Joshi R, Colagiuri S, Cooper ME, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Lisheng L, Mancia G, Marre M, Matthews DR, Mogensen CE, Perkovic V, Poulter N, Rodgers A, Williams B, MacMahon S, Patel A, Woodward M, Group A-OC (2014) Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 371: 1392–1406. doi:10.1056/NEJMoa1407963

    Article  PubMed  Google Scholar 

  29. Rabi DM, Padwal R, Tobe SW, Gilbert RE, Leiter LA, Quinn RR, Khan N, Canadian Hypertensive Education P and Canadian Diabetes A (2013) Risks and benefits of intensive blood pressure lowering in patients with type 2 diabetes. CMAJ 185:963–967. doi:10.1503/cmaj.120112

    Article  PubMed  PubMed Central  Google Scholar 

  30. Accord Study Group, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F (2010) Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 362:1575–1585. doi:10.1056/NEJMoa1001286

    Article  Google Scholar 

  31. Accord Study Group, Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simons-Morton DG, Byington RP (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574. doi:10.1056/NEJMoa1001282

    Article  Google Scholar 

  32. Cholesterol Treatment Trialists C, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125. doi:10.1016/S0140-6736(08)60104-X

    Article  Google Scholar 

  33. Stegman B, Puri R, Cho L, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nissen SE, Nicholls SJ (2014) High-intensity statin therapy alters the natural history of diabetic coronary atherosclerosis: insights from SATURN. Diabetes Care 37:3114–3120. doi:10.2337/dc14-1121

    Article  CAS  PubMed  Google Scholar 

  34. Tabas I (2016) 2016 Russell Ross memorial lecture in vascular biology: molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.116.308036

    PubMed  Google Scholar 

  35. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051. doi:10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donath MY (2016) Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia 59:679–682. doi:10.1007/s00125-016-3873-z

    Article  CAS  PubMed  Google Scholar 

  37. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP (2011) Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care 34(Suppl 2):S285–S290. doi:10.2337/dc11-s239

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kohlgruber A, Lynch L (2015) Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diab Rep 15:92. doi:10.1007/s11892-015-0670-x

    Article  PubMed  Google Scholar 

  39. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    Article  CAS  PubMed  Google Scholar 

  40. Zeadin MG, Petlura CI, Werstuck GH (2013) Molecular mechanisms linking diabetes to the accelerated development of atherosclerosis. Can J Diabetes 37:345–350. doi:10.1016/j.jcjd.2013.06.001

    Article  PubMed  Google Scholar 

  41. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  CAS  PubMed  Google Scholar 

  42. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212. doi:10.1038/ni.2001

    Article  CAS  PubMed  Google Scholar 

  43. Singh JA, Furst DE, Bharat A, Curtis JR, Kavanaugh AF, Kremer JM, Moreland LW, O’Dell J, Winthrop KL, Beukelman T, Bridges SL Jr, Chatham WW, Paulus HE, Suarez-Almazor M, Bombardier C, Dougados M, Khanna D, King CM, Leong AL, Matteson EL, Schousboe JT, Moynihan E, Kolba KS, Jain A, Volkmann ER, Agrawal H, Bae S, Mudano AS, Patkar NM, Saag KG (2012) 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken) 64:625–639. doi:10.1002/acr.21641

    Article  CAS  Google Scholar 

  44. Rho YH, Oeser A, Chung CP, Milne GL and Stein CM (2009) Drugs used in the treatment of rheumatoid arthritis: relationship between current use and cardiovascular risk factors. Arch Drug Inf 2:34–40. doi:10.1111/j.1753-5174.2009.00019.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Group CI (2016) Cardiovascular Inflammation Reduction Trial (CIRT). Clinicaltrials.gov, December 20, 2016 edn

  46. Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, Seok JH, Lee JH, Hur GM (2000) Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 47:35–44

    Article  CAS  PubMed  Google Scholar 

  47. Johnston A, Gudjonsson JE, Sigmundsdottir H, Ludviksson BR, Valdimarsson H (2005) The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol 114:154–163. doi:10.1016/j.clim.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  48. Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH (2001) Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 60:729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was in part supported by funding awarded to S. Verma from the Canada Research Chairs Program, Canadian Institutes of Health Research, and Heart and Stroke Foundation of Canada.

Authors contribution

AQ and SV conceived and developed the study design. AQ, YP, KKS, JP, and HLP collected and analyzed the data. AQ, HT, and HLP wrote the first draft. AQ, HT, HLP, and SV critically revised the manuscript. All authors reviewed the manuscript and approved submission of the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, A., Pan, Y., Singh, K.K. et al. Cardiovascular inflammation is reduced with methotrexate in diabetes. Mol Cell Biochem 432, 159–167 (2017). https://doi.org/10.1007/s11010-017-3006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3006-0

Keywords

Navigation