Skip to main content
Log in

Kinetics of expression of genes involved in glucose metabolism after the last meal in overfed mule ducks

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In waterfowls, overfeeding leads to a hepatic steatosis, also called “foie gras.” We decided to investigate the role of glucose metabolism in steatosis emergence. For this, we measured the expression of genes during the 12 h following the last meal of the overfeeding period. As expected, it showed that the expression of glucose transporter is more precocious in jejunal mucosa, especially for SGLT1, known to be the major transporter at the apical surface. In the liver, GLUT2 and HK1 are upregulated at the same time and seem to work together to import glucose. In peripherals tissues, such as muscle and subcutaneous adipose tissue (SAT), expression of genes of interest occurs later than the one in jejunum and liver. These results are in accordance with the evolution of glycemia. This study allows us to better understand the kinetic treatment of glucose after a meal in overfed ducks. It also will allow researchers to better target their sampling time knowing the optimal point of expression of each gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. André JM, Guy G, Gontier-Latonnelle K, Bernadet MD, Davail B, Hoo-Paris R, Davail S (2007) Influence of lipoprotein-lipase activity on plasma triacylglycerol concentration and lipid storage in three genotypes of ducks. Comp Biochem Physiol A Mol Integr Physiol 148:899–902. doi:10.1016/j.cbpa.2007.09.006

  2. Awad WA, Aschenbach JR, Ghareeb K, Khayal B, Hess C, Hess M (2014) Campylobacter jejuni influences the expression of nutrient transporter genes in the intestine of chickens. Vet Microbiol 172:195–201. doi:10.1016/j.vetmic.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Belo P, Romsos D, Leveille G (1976) Blood metabolites and glucose metabolism in the fed and fasted chicken. J Nutr 106:1135–1143

    CAS  PubMed  Google Scholar 

  4. Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH (2000) GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci USA 97:7313–7318. doi:10.1073/pnas.97.13.7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chartrin P, Bernadet M-D, Guy G, Mourot J, Hocquette J-F, Rideau N, Duclos MJ, Baéza E (2006) Does overfeeding enhance genotype effects on energy metabolism and lipid deposition in breast muscle of ducks? Comp Biochem Physiol A Mol Integr Physiol 145:413–418. doi:10.1016/j.cbpa.2006.07.024

    Article  PubMed  Google Scholar 

  6. Coudert E, Pascal G, Dupont J, Simon J, Cailleau-Audouin E, Crochet S, Duclos MJ, Tesseraud S, Métayer-Coustard S (2015) Phylogenesis and biological characterization of a new glucose transporter in the chicken (Gallus gallus), GLUT12. PLoS ONE 10:1–18. doi:10.1371/journal.pone.0139517

    Article  Google Scholar 

  7. Davail S, Rideau N, Guy G, André J-M, Hermier D, Hoo-Paris R (2003) Hormonal and metabolic responses to overfeeding in three genotypes of ducks. Comp Biochem Physiol Part A Mol Integr Physiol 134:707–715. doi:10.1016/S1095-6433(02)00365-3

    Article  Google Scholar 

  8. Doege H, Schürmann A, Bahrenberg G, Brauers A, Joost HG (2000) GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem 275:16275–16280. doi:10.1074/jbc.275.21.16275

    Article  CAS  PubMed  Google Scholar 

  9. Dong XY, Wang YM, Yuan C, Zou XT (2012) The ontogeny of nutrient transporter and digestive enzyme gene expression in domestic pigeon (Columba livia) intestine and yolk sac membrane during pre- and posthatch development. Poult Sci 91:1974–1982. doi:10.3382/ps.2012-02164

    Article  CAS  PubMed  Google Scholar 

  10. Farhat A, Chavez ER (2000) Comparative performance, blood chemistry, and carcass composition of two lines of pekin ducks reared mixed or separated by sex. Poult Sci 79:460–465

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez X, Bouillier-Oudot M, Molette C, Bernadet MD, Manse H (2011) Duration of transport and holding in lairage at constant postprandial delay to slaughter–effects on fatty liver and breast muscle quality in mule ducks. Poult Sci 90:2360–2369. doi:10.3382/ps.2011-01483

    Article  CAS  PubMed  Google Scholar 

  12. Ferrer R, Gil M, Moret M, Oliveras M, Planas JM (1994) Hexose transport across the apical and basolateral membrane of enterocytes from different regions of the chicken intestine ". Pflügers Archiv 426:83–88.

    Article  CAS  PubMed  Google Scholar 

  13. Fon Tacer K, Rozman D (2011) Nonalcoholic fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids 2011:783976. doi:10.1155/2011/783976

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gal-garber O, Mabjeesh SJ, Sklan D, Uni Z (2000) Nutrient-gene expression partial sequence and expression of the gene for and activity of the sodium glucose transporter in the small intestine of fed, starved and refed chickens. J Nutr 130:2174–2179

    CAS  PubMed  Google Scholar 

  15. Garriga C, Moreto M, Planas JM (1997) Hexose transport across the basolateral membrane of the chicken jejunum. Am J Physiol 272:R1330–R1335

    CAS  PubMed  Google Scholar 

  16. Garriga C, Moretó M, Planas JM (1999) Hexose transport in the apical and basolateral membranes of enterocytes in chickens adapted to high and low NaCl intakes. J Physiol 514:189–199. doi:10.1111/j.1469-7793.1999.189af.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert ER, Li H, Emmerson DA, Webb KE, Wong EA (2007) Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci 86:1739–1753

    Article  CAS  PubMed  Google Scholar 

  18. Gontier K, André J-M, Bernadet M-D, Ricaud K, Davail S, (2013) Insulin effect on lipogenesis and fat distribution in three genotypes of ducks during overfeeding. Comp Biochem Physiol A Mol Integr Physiol 164:499–505. doi:10.1016/j.cbpa.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  19. Guerre-Millo M (1995) Les transporteurs d’hexoses. Médecine Sci 11: 1111–1119.

  20. Hazelwood RL, Lorenz W (1959) Effects of fasting and insulin on carbohydrate metabolism of the domestic fowl. Am J Physiol 197:47–51

    CAS  PubMed  Google Scholar 

  21. Hermier D, Saadounb A, Salichonb M, Sellierc N, Rousselot D (1991) Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: changes induced by development and force-feeding. Lipids 26, 331–339.

    Article  CAS  PubMed  Google Scholar 

  22. Humphrey BD, Stephensen CB, Calvert CC, Klasing KC (2004) Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 138:515–525. doi:10.1016/j.cbpb.2004.06.016

    Article  PubMed  Google Scholar 

  23. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K (2004) Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101:7281–7286. doi:10.1073/pnas.0401516101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katz EB, Stenbit, a E., Hatton K, DePinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature. doi:10.1038/377151a0

    Google Scholar 

  25. Kono T, Nishida M, Nishiki Y, Seki Y, Sato K, Akiba Y (2005) Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br Poult Sci 46:510–515. doi:10.1080/00071660500181289

    Article  CAS  PubMed  Google Scholar 

  26. Kwon O, Eck P, Chen S, Corpe CP, Lee J-H, Kruhlak M, Levine M (2007) Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 21:366–377. doi:10.1096/fj.06-6620com

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Cai HY, Liu GH, Dong XL, Chang WH, Zhang S, Zheng, A J, Chen GL (2009) Effects of stress simulated by dexamethasone on jejunal glucose transport in broilers. Poult Sci 88:330–337. doi:10.3382/ps.2008-00257

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Lu L, Chen Y, Wang Z, Li X, Chen W, Tao Z, Shen J, Tian Y, Wang D, Li G, Chen L, Chen F, Fang D, Yu L, Sun Y, Ma Y, Li J, Wang J (2015) The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biol 16:1–11. doi:10.1186/s13059-015-0652-y

    Article  Google Scholar 

  30. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725. doi:10.1111/j.1432-1033.1994.tb18550.x

    Article  CAS  PubMed  Google Scholar 

  31. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138. doi:10.1016/j.mam.2012.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ruhnke I, Rӧhe I, Goodarzi Boroojeni F, Knorr F, Mader A, Hafeez A, Zentek J (2015) Feed supplemented with organic acids does not affect starch digestibility, nor intestinal absorptive or secretory function in broiler chickens. J Anim Physiol Anim Nutr (Berl) 99:29–35. doi:10.1111/jpn.12313

    Article  CAS  Google Scholar 

  33. Saadoun A, Bernard L (1986) In vivo lipogenesis of genetically lean and fat chickens: effects of nutritional state and dietary fat. J Nutr 117:428–435

    Google Scholar 

  34. Saez G, Baéza E, Davail S, Durand D, Bauchart D, Gruffat D (2009) Hepatic metabolism of glucose and linoleic acid varies in relation to susceptibility to fatty liver in ad libitum-fed Muscovy and Pekin ducks. Br J Nutr 101:510–517. doi:10.1017/S0007114508019892

    Article  CAS  PubMed  Google Scholar 

  35. Schettler T (2003) Corn and corn-derived products: sources of endocrine disruptors. Environ Health Perspect 111:691

    Article  Google Scholar 

  36. Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S (2013) Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 10:237–248. doi:10.1089/zeb.2012.0835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seki Y, Sato K, Kono T, Abe H, Akiba Y (2003) Broiler chickens (Ross strain) lack insulin-responsive glucose transporter GLUT4 and have GLUT8 cDNA. Gen Comp Endocrinol 133:80–87. doi:10.1016/S0016-6480(03)00145-X

    Article  CAS  PubMed  Google Scholar 

  38. Shepherd EJ, Helliwell, P A, Mace OJ, Morgan EL, Patel N, Kellett GL (2004) Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol 560:281–290. doi:10.1113/jphysiol.2004.072447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, Song Z(2014) Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol. 127–135. doi:10.1007/s00484-014-0829-1

  40. Thorens B, Cheng Z-Q, Brown D, Lodish FH (1990) Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol 259:C279–C285

    CAS  PubMed  Google Scholar 

  41. Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. Eur. J Physiol 447:480–489. doi:10.1007/s00424-003-1085-0

    Article  CAS  Google Scholar 

  42. Welch KC, Allalou A, Sehgal P, Cheng J, Ashok A (2013) Glucose transporter expression in an avian nectarivore: the ruby-throated hummingbird (Archilochus colubris). PLoS ONE 14:8. doi:10.1371/journal.pone.0077003

    Google Scholar 

  43. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch Eur J Physiol 447:510–518. doi:10.1007/s00424-003-1063-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the “Conseil Général des Landes” and the “Comité Interprofessionnel des Palmipèdes à Foie Gras” (CIFOG) for financing this work. We also thank the technical staff of INRA Artiguères for rearing ducks (Certificate of Authorization to Experiment on Living animals, No. B40-037-1, Ministry of Agriculture and Fish Products, ethic committee Aquitaine birds and fish No.C2EA-73). We are grateful to Frédéric Martins and Jean-José Maoret for performing Fluidigm analysis (Génopole Toulouse/Midi-pyrénées, Plateau Transcriptomique Quantitative (TQ), Toulouse, France). We finally thank Patrick Daniel, Karine Bellet, and Martine Chague of the laboratory Pyrénées Landes (LPL, Mont de Marsan) to let us use their materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gontier Karine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annabelle, T., Karine, R., Marie-Dominique, B. et al. Kinetics of expression of genes involved in glucose metabolism after the last meal in overfed mule ducks. Mol Cell Biochem 430, 127–137 (2017). https://doi.org/10.1007/s11010-017-2960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2960-x

Keywords

Navigation