Skip to main content

Advertisement

Log in

Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human telomerase reverse transcriptase is an essential rate-limiting component of telomerase complex. hTERT protein in association with other proteins and the human telomerase RNA (hTR) shows telomerase activity, essential for maintaining genomic integrity in proliferating cells. hTERT binds hTR through a decapeptide located in the RID2 (RNA interactive domain 2) domain of N-terminal region. Since hTERT is essential for telomerase activity, inhibitors of hTERT are of great interest as potential anti-cancer agent. We have selected RNA aptamers against a synthetic peptide from the RID2 domain of hTERT by employing in vitro selection protocol (SELEX). The selected RNAs could bind the free peptide, as CD spectra suggested conformational change in aptamer upon RID2 binding. Extracts of cultured breast cancer cells (MCF7) expressing this aptamer showed lower telomerase activity as estimated by TRAP assay. hTERT-binding RNA aptamers hold promise as probable anti-cancer therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

hTR:

Human telomerase RNA component

hTERT:

Human telomerase reverse transcriptase

SELEX:

Systematic evolution of ligand by exponential enrichment

References

  1. Greider CW, Blackburn EH (1987) The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898. doi:10.1016/0092-8674(87)90576-9

    Article  CAS  PubMed  Google Scholar 

  2. Blackburn EH (2005) Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett 579(4):859–862

    Article  CAS  PubMed  Google Scholar 

  3. Autexier C, Lue NF (2006) The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75:493–517. doi:10.1146/annurev.biochem.75.103004.142412

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura TM, Morin GB, Chapman KB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959. doi:10.1126/science.277.5328.955

    Article  CAS  PubMed  Google Scholar 

  5. Sharma GG, Gupta A, Wang H et al (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22:131–146. doi:10.1038/sj.onc.1206063

    Article  CAS  PubMed  Google Scholar 

  6. Poole JC, Andrews LG, Tollefsbol TO (2001) Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 269:1–12. doi:10.1016/S0378-1119(01)00440-1

    Article  CAS  PubMed  Google Scholar 

  7. Autexier C, Bachand F (2001) Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions. Mol Cell Biol 21:1888–1897. doi:10.1128/MCB.21.5.1888-1897.2001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lai CK, Mitchell JR, Collins K (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21:990–1000. doi:10.1128/MCB.21.4.990-1000.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moriarty TJ, Huard S, Dupuis S, Autexier C (2002) Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol Cell Biol 22:1253–1265. doi:10.1128/MCB.22.4.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moriarty TJ, Ward RJ, Taboski MAS, Autexier C (2005) An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 16:3152–3161. doi:10.1091/mbc.E05-02-0148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryan TM, Goodrich KJ, Cech TR (2000) Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol Cell 6:493–499. doi:10.1016/S1097-2765(00)00048-4

    Article  CAS  PubMed  Google Scholar 

  12. Banik SSR, Guo C, Smith AC et al (2002) C-terminal regions of the human telomerase catalytic subunit essential for in vivo enzyme activity. Mol Cell Biol 22:6234–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiss MA, Narayana N (1998) RNA recognition by arginine-rich peptide motifs. Biopolymers 48:167–180. doi:10.1002/(SICI)1097-0282(1998)48:2<167:AID-BIP6>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  14. Hemmerich P, Bosbach S, von Mikecz A, Krawinkel U (1997) Human ribosomal protein L7 binds RNA with an alpha-helical arginine-rich and lysine-rich domain. Eur J Biochem 245:549–556

    Article  CAS  PubMed  Google Scholar 

  15. Su L, Radek JT, Hallenga K et al (1997) RNA recognition by a bent α-helix regulates transcriptional antitermination in phage λ. Biochemistry 36:12722–12732. doi:10.1021/bi971408k

    Article  CAS  PubMed  Google Scholar 

  16. Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25. doi:10.1146/annurev.biochem.67.1.1

    Article  CAS  PubMed  Google Scholar 

  17. Smith CA, Chen L, Frankel AD (2000) Using peptides as models of RNA-protein interactions. Methods Enzymol 318:423–438

    Article  CAS  PubMed  Google Scholar 

  18. Battiste JL, Mao H, Rao NS et al (1996) Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science 273(80):1547–1551. doi:10.1126/science.273.5281.1547

    Article  CAS  PubMed  Google Scholar 

  19. Puglisi JD, Chen L, Blanchard S, Frankel AD (1995) Solution structure of a bovine immunodeficiency virus Tat–TAR peptide-RNA complex. Science 270:1200–1203. doi:10.1126/science.270.5239.1200

    Article  CAS  PubMed  Google Scholar 

  20. Oguro A, Ohtsu T, Svitkin YV et al (2003) RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9:394–407. doi:10.1261/rna.2161303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nicoletti I, Migliorati G, Pagliacci MC et al (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279. doi:10.1016/0022-1759(91)90198-O

    Article  CAS  PubMed  Google Scholar 

  22. Piatyszek MA, Kim NW, Weinrich SL et al (1995) Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Methods Cell Sci 17:1–15. doi:10.1007/BF00981880

    Article  Google Scholar 

  23. Cong Y-S, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425. doi:10.1128/MMBR.66.3.407-425.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Damm K, Hemmann U, Garin-Chesa P et al (2002) A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 20:6958–6968. doi:10.1093/emboj/20.24.6958

    Article  Google Scholar 

  25. Hisatake J, Kubota T, Hisatake Y et al (1999) 5,6-trans-16-ene-vitamin D3: a new class of potent inhibitors of proliferation of prostate, breast, and myeloid leukemic cells. Cancer Res 59:4023–4029

    CAS  PubMed  Google Scholar 

  26. Naasani I, Seimiya H, Yamori T, Tsuruo T (1999) FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res 59:4004–4011

    CAS  PubMed  Google Scholar 

  27. Glukhov AI, Zimnik OV, Gordeev SA, Severin SE (1998) Inhibition of telomerase activity of melanoma cells in vitro by antisense oligonucleotides. Biochem Biophys Res Commun 248:368–371. doi:10.1006/bbrc.1998.8801

    Article  CAS  PubMed  Google Scholar 

  28. Varshney A, Ramakrishnan SK, Sharma A et al (2014) Global expression profile of telomerase-associated genes in HeLa cells. Gene 547:211–217. doi:10.1016/j.gene.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  29. Ramakrishnan SK, Varshney A, Sharma A et al (2014) Expression of targeted ribozyme against telomerase RNA causes altered expression of several other genes in tumor cells. Tumor Biol 35:5539–5550. doi:10.1007/s13277-014-1729-z

    Article  CAS  Google Scholar 

  30. Wan MS, Fell PL, Akhtar S (1998) Synthetic 2′-O-methyl-modified hammerhead ribozymes targeted to the RNA component of telomerase as sequence-specific inhibitors of telomerase activity. Antisense Nucleic Acid Drug Dev 8:309–317. doi:10.1089/oli.1.1998.8.309

    Article  CAS  PubMed  Google Scholar 

  31. Kondo Y, Komata T, Kondo S (2001) Combination therapy of 2-5A antisense against telomerase RNA and cisplatin for malignant gliomas. Int J Oncol 18:1287–1292

    CAS  PubMed  Google Scholar 

  32. Pascolo E, Wenz C, Lingner J et al (2002) Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 277:15566–15572. doi:10.1074/jbc.M201266200

    Article  CAS  PubMed  Google Scholar 

  33. Ward RJ, Autexier C (2005) Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 68:779–786. doi:10.1124/mol.105.011494

    CAS  PubMed  Google Scholar 

  34. Barma DK, Elayadi A, Falck JR, Corey DR (2003) Inhibition of telomerase by BIBR 1532 and related analogues. Bioorganic Med Chem Lett 13:1333–1336

    Article  CAS  Google Scholar 

  35. Piotrowska K, Kleideiter E, Mürdter TE et al (2005) Optimization of the TRAP assay to evaluate specificity of telomerase inhibitors. Lab Investig. doi:10.1038/labinvest.3700352

    PubMed  Google Scholar 

  36. Bilsland AE, Anderson CJ, Fletcher-Monaghan AJ et al (2003) Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase. Oncogene 22:370–380. doi:10.1038/sj.onc.1206168

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Chen G, Peng L et al (2006) Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin Cancer Res 12:6523–6531. doi:10.1158/1078-0432.CCR-06-1491

    Article  CAS  PubMed  Google Scholar 

  38. Gomez DE, Tejera AM, Olivero OA (1998) Irreversible telomere shortening by 3′-Azido-2′, 3′-dideoxythymidine (AZT) treatment. Biochem Biophys Res Commun 246:107–110. doi:10.1006/bbrc.1998.8555

    Article  CAS  PubMed  Google Scholar 

  39. Bala J, Bhaskar A, Varshney A et al (2011) In vitro selected RNA aptamer recognizing glutathione induces ROS-mediated apoptosis in the human breast cancer cell line MCF 7. RNA Biol 8:101–111. doi:10.4161/rna.V.I.14116

    Article  CAS  PubMed  Google Scholar 

  40. Nieuwlandt D, Wecker M, Gold L (1995) In vitro selection of RNA ligands to substance P. Biochemistry 34:5651–5659. doi:10.1021/bi00016a041

    Article  CAS  PubMed  Google Scholar 

  41. Xu W, Ellington AD (1996) Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. Proc Natl Acad Sci USA 93:7475–7480. doi:10.1073/pnas.93.15.7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilbert BA, Sha M, Wathen ST, Rando RR (1997) RNA aptamers that specifically bind to a K Ras-derived farnesylated peptide. Bioorganic Med Chem 5(6):1115–1122

    Article  CAS  Google Scholar 

  43. Ylera F, Lurz R, Erdmann VA, Fürste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588. doi:10.1006/bbrc.2002.6354

    Article  CAS  PubMed  Google Scholar 

  44. Chen J-L, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100:503–514. doi:10.1016/S0092-8674(00)80687-X

    Article  CAS  PubMed  Google Scholar 

  45. Brown Y, Abraham M, Pearl S et al (2007) A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs. Nucleic Acids Res 35:6280–6289. doi:10.1093/nar/gkm713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lato SM, Boles AR, Ellington AD (1995) In vitro selection of RNA lectins: using combinatorial chemistry to interpret ribozyme evolution. Chem Biol 2:291–303. doi:10.1016/1074-5521(95)90048-9

    Article  CAS  PubMed  Google Scholar 

  47. Berova N, Nakanishi K, Woody R (2000) Circular dichroism : principles and applications. Wiley, New York

    Google Scholar 

  48. Gilligan TJ, Schwarz G (1976) The self-association of adenosine-5′-triphosphate studied by circular dichroism at low ionic strengths. Biophys Chem 4:55–63

    Article  CAS  PubMed  Google Scholar 

  49. Sundaram P, Kurniawan H, Byrne ME, Wower J (2013) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271. doi:10.1016/j.ejps.2012.10.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by Project Grants from Department of Sciences and Technology and Grant received under UGC Resource Networking Centre, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Yadava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, A., Bala, J., Santosh, B. et al. Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells. Mol Cell Biochem 427, 157–167 (2017). https://doi.org/10.1007/s11010-016-2907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2907-7

Keywords

Navigation