Skip to main content
Log in

Therapeutic potential of ADAM17 modulation in gastric cancer through regulation of the EGFR and TNF-α signalling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A disintegrin and metalloproteinase 17 (ADAM17) is highly expressed in various tumours and affects tumour progression. In this study, ADAM17 expression in 60 gastric cancer and 20 normal gastric mucosal tissues was assessed using immunohistochemistry. ADAM17 expression was higher in gastric cancer tissues than in normal gastric mucosal tissues (P < 0.0005). A significant relationship was identified between ADAM17 expression and the depth of tumour invasion, metastasis, and carcinoma stage. Furthermore, the effects of ADAM17 knockdown on the proliferation, cell invasion, and apoptosis of human gastric carcinoma cells (SGC-7901) were determined. SGC-7901 cells were transfected with ADAM17-shRNA, and cell proliferation and migration were assessed using CCK-8 and transwell assays, respectively, to evaluate the role of ADAM17 in tumour proliferation and invasion. Furthermore, the EGFR signalling pathway, the cell membrane receptor-bound TNF-α level, and apoptosis were evaluated by western blotting and flow cytometry. The inhibition of cell proliferation and invasion was observed in the ADAM17 knockdown cells, which was associated with modulation of the EGFR signalling pathway. Apoptosis was increased, and TNF-α signalling was attenuated in the ADAM17 knockdown cells. Our study demonstrated that ADAM17 over-expression in gastric cancer tissues was closely associated with tumour proliferation, invasion, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H (2016) Gastric cancer. Lancet. doi:10.1016/S0140-6736(16)30354-3

    Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321(Pt 2):265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scheller J, Chalaris A, Garbers C, Rose-John S (2011) ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 32:380–387

    Article  CAS  PubMed  Google Scholar 

  5. Kanda K, Komekado H, Sawabu T, Ishizu S, Nakanishi Y, Nakatsuji M, Akitake-Kawano R, Ohno M, Hiraoka Y, Kawada M, Kawada K, Sakai Y, Matsumoto K, Kunichika M, Kimura T, Seno H, Nishi E, Chiba T (2012) Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signaling via enhanced ectodomain shedding of TNF-alpha. EMBO Mol Med 4:396–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blobel CP (2005) ADAMs: key components in EGFR signaling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  7. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  CAS  PubMed  Google Scholar 

  8. Murphy G (2008) The ADAMs: signaling scissors in the tumour microenvironment. Nat Rev Cancer 8:929–941

    Article  CAS  PubMed  Google Scholar 

  9. Warneke VS, Behrens HM, Haag J, Kruger S, Simon E, Mathiak M, Ebert MP, Rocken C (2013) Members of the EpCAM signaling pathway are expressed in gastric cancer tissue and are correlated with patient prognosis. Br J Cancer 109:2217–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang TC, Zhu WG, Huang MD, Fan RH, Chen XF (2012) Prognostic value of ADAM17 in human gastric cancer. Med Oncol 29:2684–2690

    Article  CAS  PubMed  Google Scholar 

  11. McGowan PM, Ryan BM, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2007) ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res 13:2335–2343

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, Zhang ZG, Yang H, Chopp M (2007) Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci 98:674–684

    Article  CAS  PubMed  Google Scholar 

  13. Wang XJ, Feng CW, Li M (2013) ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3 K/Akt pathway. Mol Cell Biochem 380:57–66

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa M, Nabeshima K, Asano S, Hamasaki M, Uesugi N, Tani H, Yamashita Y, Iwasaki H (2009) Up-regulated expression of ADAM17 in gastrointestinal stromal tumors: coexpression with EGFR and EGFR ligands. Cancer Sci 100:654–662

    Article  CAS  PubMed  Google Scholar 

  15. Huang Z, Xie DH, Guo L, Hu CH, Fang X, Meng Q, Ping XX, Lu ZW (2015) The utility of MRI for pre-operative T and N staging of gastric carcinoma: a systematic review and meta-analysis. Br J Radiol 88:20140552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Chen G, Cheng X, Teng Z, Cai X, Yang J, Sun X, Lu W, Wang X, Yao Y, Hu C, Cao P (2015) Therapeutic potential of digitoflavone on diabetic nephropathy: nuclear factor erythroid 2-related factor 2-dependent anti-oxidant and anti-inflammatory effect. Sci Rep 5:12377

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang Y, Cai X, Yang J, Sun X, Hu C, Yan Z, Xu X, Lu W, Wang X, Cao P (2014) Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol Cancer 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breshears LM, Schlievert PM, Peterson ML (2012) A disintegrin and metalloproteinase 17 (ADAM17) and epidermal growth factor receptor (EGFR) signaling drive the epithelial response to Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1). J Biol Chem 287:32578–32587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DeBerge MP, Ely KH, Cheng GS, Enelow RI (2013) ADAM17-mediated processing of TNF-alpha expressed by antiviral effector CD8+T cells is required for severe T-cell-mediated lung injury. PLoS ONE 8:e79340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rose-John S (2013) ADAM17, shedding, TACE as therapeutic targets. Pharmacol Res 71:19–22

    Article  CAS  PubMed  Google Scholar 

  21. Stanton H, Melrose J, Little CB, Fosang AJ (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 1812:1616–1629

    Article  CAS  PubMed  Google Scholar 

  22. Saftig P, Reiss K (2011) The “A Disintegrin and Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90:527–535

    Article  CAS  PubMed  Google Scholar 

  23. Sisto M, Lisi S, D’Amore M, Lofrumento DD (2015) The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjogren’s syndrome. Clin Exp Med 15:215–225

    Article  CAS  PubMed  Google Scholar 

  24. Ebsen H, Lettau M, Kabelitz D, Janssen O (2015) Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol 65:416–428

    Article  CAS  PubMed  Google Scholar 

  25. Uchikawa S, Yoda M, Tohmonda T, Kanaji A, Matsumoto M, Toyama Y, Horiuchi K (2015) ADAM17 regulates IL-1 signaling by selectively releasing IL-1 receptor type 2 from the cell surface. Cytokine 71:238–245

    Article  CAS  PubMed  Google Scholar 

  26. Liu HB, Zhu Y, Yang QC, Shen Y, Zhang XJ, Chen H (2015) Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma. Genet Mol Res 14:4391–4398

    Article  CAS  PubMed  Google Scholar 

  27. Hong KJ, Wu DC, Cheng KH, Chen LT, Hung WC (2014) RECK inhibits stemness gene expression and tumorigenicity of gastric cancer cells by suppressing ADAM-mediated Notch1 activation. J Cell Physiol 229:191–201

    Article  CAS  PubMed  Google Scholar 

  28. Shou ZX, Jin X, Zhao ZS (2012) Upregulated expression of ADAM17 is a prognostic marker for patients with gastric cancer. Ann Surg 256:1014–1022

    Article  PubMed  Google Scholar 

  29. Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell WE, Lee DC (2004) Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 279:24179–24188

    Article  CAS  PubMed  Google Scholar 

  30. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733–736

    Article  CAS  PubMed  Google Scholar 

  31. Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW (2009) Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 20:5236–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Science and Technology Program of Changshu Health Bureau (No. CSWS201301).

Author contributions

JS, JJ: study conception and design, data acquisition, analysis and interpretation of data, and writing of the manuscript. KL: acquisition, analysis, and interpretation of data. QC: analysis and interpretation of data. DT: acquisition, analysis, and interpretation of data, and proof-reading of the manuscript. ZC: obtained funding, study conception and design, study supervision, and revision of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jinbing Sun and Jianlong Jiang have contributed equally to this work as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Jiang, J., Lu, K. et al. Therapeutic potential of ADAM17 modulation in gastric cancer through regulation of the EGFR and TNF-α signalling pathways. Mol Cell Biochem 426, 17–26 (2017). https://doi.org/10.1007/s11010-016-2877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2877-9

Keywords

Navigation