Skip to main content

Advertisement

Log in

Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Our earlier studies have shown that compared to resveratrol, its analogs with ortho-methoxy substituents exert stronger antiproliferative and proapoptotic activity. Since estrogens are considered the major risk factors of breast carcinogenesis, the aim of this study was to evaluate the effect of 3,4,2′-trimethoxy (3MS), 3,4,2′,4′-tetramethoxy (4MS), and 3,4,2′,4′,6′-pentamethoxy (5MS) trans-stilbenes on the constitutive expression of the enzymes involved in estrogen metabolism, as well as receptors: AhR and HER2 in breast epithelial cell line MCF10A. The results showed different effect of resveratrol and its methoxy derivatives on the expression of genes encoding key enzymes of estrogen synthesis and catabolism. Resveratrol at the doses of 1 and 5 µmol/L increased the level of CYP19 transcript and protein level, while 5MS reduced mRNA transcript of both CYP19 and STS genes. Resveratrol and all its derivatives reduced also SULT1E1 mRNA transcript level. The reduced expression of AhR, CYP1A1, and 1B1 was also found as a result of treatment with these compounds. The most significant changes were found in the case of AhR. The most potent inhibitor of CYP1A1 and 1B1 genes expression was 5MS, which reduced the levels of mRNA transcript and protein of both CYPs from 31 to 89% of the initial levels. These results indicate that methoxy derivatives of resveratrol might be efficient modulators of estrogen metabolism. Moreover, the number of methoxy groups introduced to stilbene structure may play a certain role in this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hewitt SC, Korach KS (2002) Estrogen receptors: structure, mechanism and function. Rev Endocr Metabol Disord 3:193–200. doi:10.1023/A:1020068224909

    Article  CAS  Google Scholar 

  2. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230. doi:10.1016/S0960-0760(03)00360-1

    Article  CAS  PubMed  Google Scholar 

  3. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282. doi:10.1056/NEJMra050776

    Article  CAS  PubMed  Google Scholar 

  4. Sasano H, Nagasaki S, Miki Y, Suzuki T (2009) New developments in intracrinology of human breast cancer. Estrogen sulfatase and sulfotransferase. Ann N Y Acad Sci 1155:76–79. doi:10.1111/j.1749-6632.2008.03683.x

    Article  CAS  PubMed  Google Scholar 

  5. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124. doi:10.1016/j.canlet.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Santner SJ, Feil PD, Santen RJ (1984) In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J Clin Endocrinol Metab 59:29–33. doi:10.1210/jcem-59-1-29

    Article  CAS  PubMed  Google Scholar 

  7. Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768. doi:10.1210/jc.2002-020670

    Article  CAS  PubMed  Google Scholar 

  8. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF (2007) Cytochrome P450 1B1: mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res 67:812–817. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  9. Li KM, Todorovic R, Devanesan P, Higginbotham S, Köfeler H, Ramanathan R, Gross ML, Rogan EG, Cavalieri EL (2004) Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 25:289–297. doi:10.1093/carcin/bgg191

    Article  CAS  PubMed  Google Scholar 

  10. Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 94:10937–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2:251–256. doi:10.1158/1940-6207

    Article  CAS  Google Scholar 

  12. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Kato S, Fujii Kuriyama Y (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423:545–550

    Article  CAS  PubMed  Google Scholar 

  13. Zhao S, Kanno Y, Nakayama M, Makimura M, Ohara S, Inouye Y (2012) Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Lett 317:192–198. doi:10.1016/j.canlet.2011.11.025

    Article  CAS  PubMed  Google Scholar 

  14. Ménard S, Tagliabue E, Campiglio M, Pupa SM (2000) Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol 182:150–162. doi:10.1002/(SICI)1097-4652(200002)182:2<150:AID-JCP3>3.0.CO;2-E

    Article  PubMed  Google Scholar 

  15. Hartman ZC, Yang XY, Glass O, Lei G, Osada T, Dave SS, Morse MA, Clay TM, Lyerly HK (2011) HER2 overexpression elicits a proinflammatory IL-6 autocrine signaling loop that is critical for tumorigenesis. Cancer Res 71:4380–4391. doi:10.1158/0008-5472.CAN-11-030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knupfer H, Preiss R (2007) Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Treat 102:129–135. doi:10.1007/s10549-006-9328-3

    Article  PubMed  Google Scholar 

  17. Zhao S, Ohara S, Kanno Y, Midorikawa Y, Nakayama M, Makimura M, Park Y, Inouye Y (2013) HER2 overexpression-mediated inflammatory signaling enhances mammosphere formation through up-regulation of aryl hydrocarbon receptor transcription. Cancer Lett 330:41–48. doi:10.1016/j.canlet.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  18. Nakata R, Takahashi S, Inoue H (2012) Recent advances in the study on resveratrol. Biol Pharm Bull 35:273–279. doi:10.1248/bpb.35.273

    Article  CAS  PubMed  Google Scholar 

  19. Aluyen JK, Ton QN, Tran T, Yang AE, Gottlieb HB, Bellanger RA (2012) Resveratrol: potential as anticancer agent. J Diet Suppl 9:45–56. doi:10.3109/19390211.2011.650842

    Article  CAS  PubMed  Google Scholar 

  20. Casper RF, Quesne M, Rogers IM, Shirota T, Jolivet A, Milgrom E, Savouret JF (1999) Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol 56:784–790. http://molpharm.aspetjournals.org/content/56/4/784.long

  21. Lu F, Zahid M, Wang C, Saeed M, Cavalieri EL, Rogan EG (2008) Resveratrol prevents estrogen-DNA adduct formation and neoplastic transformation in MCF-10F cells. Cancer Prev Res 1:135–145. doi:10.1158/1940-6207.CAPR-08-0037

    Article  CAS  Google Scholar 

  22. Piotrowska H, Myszkowski K, Ziółkowska A, Kulcenty K, Wierzchowski M, Kaczmarek M, Murias M, Kwiatkowska-Borowczyk E, Jodynis-Liebert J (2012) Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV-3 and A-2780 cancer cells. Toxicol Appl Pharmacol 263:53–60. doi:10.1016/j.taap.2012.05.023

    Article  CAS  PubMed  Google Scholar 

  23. Sale S, Verschoyle RD, Boocock D, Jones DJN, Wilsher N, Potter GA, Farmer PB, Steward WP, Gescher AJ (2004) Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3, 4,5,4′-tetramethoxystilbene. Br J Cancer 90:736–744. doi:10.1038/sj.bjc.6601568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mikstacka R, Wierzchowski M, Dutkiewicz Z, Gielara-Korzańska A, Korzański A, Teubert A, Sobiak S, Baer-Dubowska W (2014) 3,4,2′-Trimethoxy-trans-stilbene: a potent CYP1B1 inhibitor. Med Chem Commun 5:496–501. doi:10.1039/C3MD00317E

    Article  CAS  Google Scholar 

  25. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    CAS  PubMed  Google Scholar 

  26. Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, Lareef HM, Garberand J, Russo JH (2006) 17-β-Estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 20:1622–1634. doi:10.1096/fj.05-5399com

    Article  CAS  PubMed  Google Scholar 

  27. Licznerska BE, Szaefer H, Murias M, Bartoszek A, Baer-Dubowska W (2013) Modulation of CYP19 expression by cabbage juices and their active components: indole-3-carbinol and 3,3′-diindolylmethene in human breast epithelial cell lines. Eur J Nutr 52:1483–1492. doi:10.1007/s00394-012-0455-9

    Article  CAS  PubMed  Google Scholar 

  28. Szaefer H, Licznerska B, Krajka-Kuźniak V, Bartoszek A, Baer-Dubowska W (2012) Modulation of CYP1A1, CYP1A2 and CYP1B1 expression by cabbage juices and indoles in human breast cell lines. Nutr Cancer 64:879–888. doi:10.1080/01635581.2012.690928

    Article  CAS  PubMed  Google Scholar 

  29. Szaefer H, Krajka-Kuźniak V, Licznerska B, Bartoszek A, Baer-Dubowska W (2015) Cabbage Juices and Indoles Modulate the Expression Profile of AhR, ERα, and Nrf2 in Human Breast Cell Lines. Nutr Cancer 67:1342–1354. doi:10.1080/01635581.2015.1082111

    Article  PubMed  Google Scholar 

  30. Jin RY, Gui WJ, Guo YR, Wang CM, Wu JX, Zhu GN (2008) Comparison of monoclonal antibody-based ELISA for triazophos between the indirect and direct formats. Food Agric Immunol 19:49–60. doi:10.1080/09540100801933454

    Article  Google Scholar 

  31. International Agency for Research on Cancer, Monographs on the Evolution of Carcinogenic Risks to Humans: Hormonal Contraception and Postmenopausal Hormone Therapy, vol 72. IARC (1999), Lyon

  32. Cui J, Shen Y, Li R (2013) Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol Med 19:197–209. doi:10.1016/j.molmed.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinzone JJ, Stevenson H, Strobl JS, Berg PE (2004) Molecular and cellular determinants of estrogen receptor α expression. Mol Cell Biol 24:4605–4612. doi:10.1128/MCB.24.11.4605-4612.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu J, Weise AM, Falany JL, Falany CN, Thibodeau BJ, Miller FR, Kocarek TA, Runge-Morris M (2010) Expression of estrogenicity genes in a lineage cell culture model of human breast cancer progression. Breast Cancer Res Treat 120:35–45. doi:10.1007/s10549-009-0363-8

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Lee KW, Chan FL, Chen S, Leung LK (2006) The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells. Toxicol Sci 92:71–77. doi:10.1093/toxsci/kfj190

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Leung LK (2007) Pharmacological concentration of resveratrol suppresses aromatase in JEG-3 cells. Toxicol Lett 173:175–180. doi:10.1016/j.toxlet.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  37. Otake Y, Nolan AL, Walle UK, Walle T (2000) Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells. J Steroid Biochem Mol Biol 73:265–270. doi:10.1016/S0960-0760(00)00073-X

    Article  CAS  PubMed  Google Scholar 

  38. Lewis AJ, Walle UK, King RS, Kadlubar FF, Falany CN, Walle T (1998) Bioactivation of the cooked food mutagen N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by estrogen sulfotransferase in cultured human mammary epithelial cells. Carcinogenesis 19:2049–2053. doi:10.1093/carcin/19.11.2049

    Article  CAS  PubMed  Google Scholar 

  39. McFadyen MCE, Rooney PH, Melvin WT, Murray GI (2003) Quantitative analysis of the Ah receptor/cytochrome P450 CYP1B1/CYP1A1 signalling pathway. Biochem Pharmacol 65:1663–1674. doi:10.1016/S0006-2952(03)00111-4

    Article  CAS  PubMed  Google Scholar 

  40. Bandiera S, Weidlich S, Harth V, Broede P, Ko J, Friedberg T (2005) Proteasomal degradation of human cytochrome P450 1B1 (CYP1B1): effect of the Asn453Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol Pharmacol 67:435–443. doi:10.1124/mol.104.006056

    Article  CAS  PubMed  Google Scholar 

  41. Murias M, Miksits M, Aust S, Spatzenegger M, Thalhammer T, Szekeres T, Jaeger W (2008) Metabolism of resveratrol in breast cancer cell lines: impact of sulfotransferase 1A1 expression on cell growth inhibition. Cancer Lett 261:172–182. doi:10.1016/j.canlet.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  42. Damianaki A, Bakogeorgou E, Kampa M, Notas G, Hatzoglou A, Panagiotou S, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Potent inhibitory action of red wine polyphenols on human breast cancer cells. J Cell Biochem 78:429–441. doi:10.1002/1097-4644(20000901)78:3<429:aid-jcb8>3.0.co;2-m

    Article  CAS  PubMed  Google Scholar 

  43. Beedanagari SR, Bebenek I, Bui P, Hankinson O (2009) Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol Sci 110:61–67. doi:10.1093/toxsci/kfp079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen ZH, Hurh YJ, Na HK, Kim JH, Chun YJ, Kim DH, Kang KS, Cho MH, Surh YJ (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25:2005–2013. doi:10.1093/carcin/bgh183

    Article  CAS  PubMed  Google Scholar 

  45. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K (2015) Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med. doi:10.1126/scitranslmed.aaa7619

    PubMed  PubMed Central  Google Scholar 

  46. Fu J, Fang H, Michelle Paulsen M, Ljungman M, Kocarek TA, Runge-Morris M (2011) Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor. J Pharmacol Exp Ther 339:597–606. doi:10.1124/jpet.111.185173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Polish National Science Centre, grant 2012/05/B/NZ7/03048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Baer-Dubowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Licznerska, B., Szaefer, H., Wierzchowski, M. et al. Resveratrol and its methoxy derivatives modulate the expression of estrogen metabolism enzymes in breast epithelial cells by AhR down-regulation. Mol Cell Biochem 425, 169–179 (2017). https://doi.org/10.1007/s11010-016-2871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2871-2

Keywords

Navigation