Skip to main content

Advertisement

Log in

Trans-cinnamaldehyde protected PC12 cells against oxygen and glucose deprivation/reperfusion (OGD/R)-induced injury via anti-apoptosis and anti-oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ischemia stroke is the major cause of mortality and permanent neurological disability with little definitive therapeutic options. This cerebral ischemic injury leads to the oxidative stress and eventually cell death. We hypothesized that treatment of this condition with the trans-cinnamaldehyde(TC) could protect cells from ischemic and reperfusion injury. Oxygen and glucose deprivation/reperfusion (OGD/R) was used as an in vitro model of hypoxic ischemic injury in present study. MTT was used to evaluate the protective effects of TC. Next, we tested whether TC reduced the production of reactive oxygen species (ROS). Besides, experiments were performed to determine whether or not the mitochondrial membrane potential was affected. Furthermore, the inhibiters of NO and PI3 K were used to determine the initial mechanisms. TC treatment improved cell viability, reduced intracellular ROS, and increased MMP. Further, the inhibition of NO or PI3 K significantly reduced TC’s protective effects. These findings suggest that TC might be a promising agent for ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao J, Zhang X, Li L et al (2015) Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. British J Pharmacol 172(20):5009–5023

    Article  CAS  Google Scholar 

  2. Kianpour Rad S, Kanthimathi M, Abd Malek S, Lee G, Looi C, Wong W (2015) Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells. Plos One 10(12):e0145216

    Article  PubMed Central  Google Scholar 

  3. Trinh N, Dumas E, Oulahal N et al (2015) Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua. Canadian J Microbiol 61(4):263–271

    Article  CAS  Google Scholar 

  4. Roberta L, Marilia F, Thais A, de Moita WC, Isabella M, Maria Iz, Carlos F, Monica M (2016) Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biol Technol 113:29–39

    Article  Google Scholar 

  5. Rajamani K, Lin Y, Chiou T et al (2015) The antisenescence effect of trans-cinnamaldehyde on adipose-derived stem cells. Cell Transplant 24(3):493–507

    Article  PubMed  Google Scholar 

  6. Chen YF, Wang YW, Huang WS et al (2016) Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NFκ-B Signaling Pathway. Neuromol Med 10:1–12

    Google Scholar 

  7. Ballabeni V, Tognolini M, Giorgio C, Bertoni S, Bruni R, Barocelli E (2010) Ocotea quixos Lam. essential oil: in vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia 81(4):289–295

    Article  CAS  PubMed  Google Scholar 

  8. Cheung C, Hotchkiss S, Pease C (2003) Cinnamic compound metabolism in human skin and the role metabolism may play in determining relative sensitisation potency. J Dermatol Sci 31(1):9–19

    Article  CAS  PubMed  Google Scholar 

  9. Sun K et al (2010) Cerebralcare Granule, a Chinese herb compound preparation, improves cerebral microcirculatory disorder and hippocampal CA1 neuron injury in gerbils after ischemia-reperfusion. J Ethnopharmacol 130(2):398–406

    Article  PubMed  Google Scholar 

  10. Zhang P, Hou J, Fu J, Li D, Zhang C, Liu J (2013) Baicalin protects rat brain microvascular endothelial cells injured by oxygen-glucose deprivation via anti-inflammation. Brain Res Bullet 97:8–15

    Article  Google Scholar 

  11. Rui C, Yuxiang L, Jianqiang Y et al (2012) Protective effects of Lycium barbarum polysaccharide on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. J Mol Histol 43(5):535–542

    Article  PubMed  Google Scholar 

  12. Lee J, Lee H, Kang S, Choi H, Ryu J, Yune T (2014) Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology 79:161–171

    Article  CAS  PubMed  Google Scholar 

  13. Broughton B, Reutens D, Sobey C (2009) Apoptotic mechanisms after cerebralischemia. Stroke 40(5):e331–e339

    Article  PubMed  Google Scholar 

  14. Ma N, Zhou R, Li Y et al (2015) Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. J Nat Med 69(4):575–583

    Article  CAS  PubMed  Google Scholar 

  15. Doyle K, Simon R, Stenzel-Poore M (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55(3):310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu Y, Long L, Wang Q et al (2013) Simvastatin induces neuroprotection in 6-OHDA-lesioned PC12 via the PI3K/AKT/caspase 3 pathway and anti-inflammatory responses. CNS Neurosci & Ther 19(3):170–177

    Article  Google Scholar 

  17. Vahabzadeh G, Rahbar-Roshandel N, Ebrahimi S, Mahmoudian M (2016) Neuroprotective effect of noscapine on cerebral oxygen-glucose deprivation injury. Pharmacolog Rep 67(2):281–288

    Article  Google Scholar 

  18. Bele S, Proescholdt M, Brawanski A et al (2015) Continuous intra-arterial nimodipine infusion in patients with severe refractory cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a feasibility study and outcome results. Acta Neurochirurgica 157(12):2041–2050

    Article  PubMed  Google Scholar 

  19. Kim S, Kim K, Cho J, Kim Y (2015) Clinical Variables Correlated with Numbers of Intra-arterial Nimodipine Infusion in Patients with Medically Refractory Cerebral Vasospasm. J Cerebrovasc Endovasc Neurosurg 17(3):157–165

    Article  PubMed  PubMed Central  Google Scholar 

  20. Monzani D, Genovese E, Presutti L et al (2015) Nimodipine in otolaryngology: from past evidence to clinical perspectives. Acta Otorhinolaryngologica Italica: Organo Ufficiale Della Società Italiana Di Otorinolaringologia E Chirurgia 35(3):135–145

    CAS  Google Scholar 

  21. Agrawal M, Kumar V, Pant A et al (2013) Trans-Resveratrol protects ischemic PC12 Cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem Neurosci 4(2):285–294

    Article  CAS  PubMed  Google Scholar 

  22. Kang B, Kim M, Shin H et al (2015) Anti-Neuroinflammatory Effects of Uncaria sinensis in LPS-Stimulated BV2 Microglia Cells and Focal Cerebral Ischemic Mice. Am J Chin Med 43(6):1099–1115

    Article  PubMed  Google Scholar 

  23. Zeng K, Yu Q, Tu P et al (2015) Deoxysappanone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia sappan L., protects neurons from microglia-mediated inflammatory injuries via inhibition of IκB kinase (IKK)-NF-κB and p38/ERK MAPK pathways. European J Pharmacol 748:18–29

    Article  CAS  Google Scholar 

  24. Hwang C, Yun H, Hong J et al (2015) Reducing effect of IL-32α in the development of stroke through blocking of NF-κB, but enhancement of STAT3 pathways. Mol Neurobiol 51(2):648–660

    Article  CAS  PubMed  Google Scholar 

  25. Ryu S, Park H, Seol G, Choi I (2014) 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia. J Pharm Pharmacol 66(12):1818–1826

    Article  CAS  PubMed  Google Scholar 

  26. Wu J, Li M, Wang G et al (2015) Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice. Acta Pharmacologica Sinica 36(9):1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang R, Zhou R, Yu J et al (2016) Protective effects of aloin on oxygen and glucose deprivation-induced injury in PC12 cells. Brain Res Bullet 121:75–83

    Article  CAS  Google Scholar 

  28. Wang L, Zhang Y, Dong Q et al (2015) Neuroprotective effect of neuroserpin in oxygen-glucose deprivation- and reoxygenation-treated rat astrocytes in vitro. Plos One 10(4):e0123932

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mo Z, Fang Y, He Y, Zhang S (2012) β-Asarone protects PC12 cells against OGD/R-induced injury via attenuating Beclin-1-dependent autophagy. Acta Pharmacologica Sinica 33(6):737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ji H, Wang D, Chen N et al (2014) IMM-H004, a novel courmarin derivative, protects against oxygen-and glucose-deprivation/restoration-induced apoptosis in PC12 cells. European J Pharmacol 723:259–266

    Article  CAS  Google Scholar 

  31. Wang Y, Ma W, Jia A, Guo Q (2015) Parecoxib Protects Mouse Cortical Neurons Against OGD/R Induced Neurotoxicity by Up-Regulating Bcl-2. Neurochem Res 40(6):1294–1302

    Article  CAS  PubMed  Google Scholar 

  32. Zhao P, Zhou R, Yu J et al (2015) Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Intl J Mol Med 36(3):633–644

    CAS  Google Scholar 

  33. Le X, Nguyet Pham H, Matsumoto K et al (2015) Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. J Ethnopharmacol 164:37–45

    Article  PubMed  Google Scholar 

  34. Madineni A, Alhadidi Q, Shah Z (2016) Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia. Mol Neurobiol 53(2):867–878

    Article  CAS  PubMed  Google Scholar 

  35. Chen T, Liu W, Fei Z et al (2011) Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway. Neuroscience 183:203–211

    Article  CAS  PubMed  Google Scholar 

  36. Kang X, Chen J, Xu Z, Li H, Wang B (2007) Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol In Vitro 21(6):1003–1009

    Article  CAS  PubMed  Google Scholar 

  37. Chiu B, Chang C, Lin M et al (2014) Beneficial effect of astragalosides on stroke condition using PC12 cells under oxygen glucose deprivation and reperfusion. Cell Mol Neurobiol 34(6):825–837

    Article  CAS  PubMed  Google Scholar 

  38. Duong C, Kim J (2016) Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS. Intl J Radiat Biol 92(4):195–201

    Article  CAS  PubMed  Google Scholar 

  39. Hwang C, Yun H, Hong J et al (2015) Reducing effect of IL-32α in the development of stroke through blocking of NF-κB, but enhancement of STAT3 pathways. Mol Neurobiol 51(2):648–660

    Article  CAS  PubMed  Google Scholar 

  40. Bak S, Choi H, Koh S et al (2015) Neuroprotective Effects of Acetyl-L-Carnitine Against Oxygen-Glucose Deprivation-Induced Neural Stem Cell Death. Mol Neurobiol. doi:10.1007/s12035-015-9563-x

    PubMed  Google Scholar 

  41. Luo Y, Yang X, Wu J et al (2013) Hydrogen sulfide prevents OGD/R-induced apoptosis via improving mitochondrial dysfunction and suppressing an ROS-mediated caspase-3 pathway in cortical neurons. Neurochem Intl 63(8):826–831

    Article  CAS  Google Scholar 

  42. Zeng K, Yu Q, Tu P et al (2015) Deoxysappanone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia sappan L., protects neurons from microglia-mediated inflammatory injuries via inhibition of IκB kinase (IKK)-NF-κB and p38/ERK MAPK pathways. European J Pharmacol 748:18–29

    Article  CAS  Google Scholar 

  43. Suematsu Y, Miura S, Saku K et al (2016) A novel inducible cholesterol efflux peptide, FAMP, protects against myocardial ischemia reperfusion injury through a nitric oxide pathway. Intl J Cardiol 202:810–816

    Article  Google Scholar 

  44. Zheng L, Ding J, Wang J, Zhou C, Zhang W (2016) Effects and Mechanism of Action of Inducible Nitric Oxide Synthase on Apoptosis in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Anat Rec 299(2):246–255

    Article  CAS  Google Scholar 

  45. Li Y, Liu K, Kang Z, Sun X, Liu W, Mao Y (2016) Helium preconditioning protects against neonatal hypoxia-ischemia via nitric oxide mediated up-regulation of antioxidases in a rat model. Behav Brain Res 300:31–37

    Article  CAS  PubMed  Google Scholar 

  46. Takata K, Imaizumi S, Saku K et al (2016) The ApoA-I mimetic peptide FAMP promotes recovery from hindlimb ischemia through a nitric oxide (NO)-related pathway. Intl J Cardiol 207:317–325

    Article  Google Scholar 

  47. Chao X, Ma Y, Qu Y et al (2013) Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral a) ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp Neurol 239:163–169

    Article  CAS  PubMed  Google Scholar 

  48. Arabian M, Aboutaleb N, Soleimani M, Mehrjerdi F, Ajami M, Pazoki-Toroudi H (2015) Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice. Iranian J Basic Med Sci 18(1):14–21

    Google Scholar 

  49. Willcox J, Summerlee A (2014) Relaxin protects astrocytes from hypoxia in vitro. Plos One 9(3):e90864

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng Y, Xia Z, Han Y, Rong J (2016) Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation. Oxid Med Cell Longev. doi:10.1155/2016/2060874

    Google Scholar 

  51. Ke Z, Liu J, Xu P, Gao A, Wang L, Ji L (2015) The Cardioprotective Effect of Icariin on Ischemia-Reperfusion Injury in Isolated Rat Heart: Potential Involvement of the PI3K-Akt Signaling Pathway. Cardiovasc Ther 33(3):134–140

    Article  CAS  PubMed  Google Scholar 

  52. Hu X, Xie C, He S, Zhang Y, Li Y, Jiang L (2013) Remifentanil postconditioning improves global cerebral ischemia-induced spatial learning and memory deficit in rats via inhibition of neuronal apoptosis through the PI3K signaling pathway. Neurolog Sci 34(11):1955–1962

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science and Technology Key Program: The research on the material basis and modern preparations in the treatment of stroke with Hui Ethnic Herbal Fragrant Remedy (2013BAI11B07) and Ningxia Hui Autonomous Region Science and Technology Support Program: The novel drug development for Hui Ethnic Herbal Specific Remedy (2015BAK45B01) (2012 [17]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Xiang Li or Jian-Qiang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Xue Qi and Ru Zhou have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Zhou, R., Liu, Y. et al. Trans-cinnamaldehyde protected PC12 cells against oxygen and glucose deprivation/reperfusion (OGD/R)-induced injury via anti-apoptosis and anti-oxidative stress. Mol Cell Biochem 421, 67–74 (2016). https://doi.org/10.1007/s11010-016-2785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2785-z

Keywords

Navigation