Skip to main content
Log in

Osteopontin-stimulated apoptosis in cardiac myocytes involves oxidative stress and mitochondrial death pathway: role of a pro-apoptotic protein BIK

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increased osteopontin (OPN) expression in the heart, specifically in myocytes, associates with increased myocyte apoptosis and myocardial dysfunction. Recently, we provided evidence that OPN interacts with CD44 receptor, and induces myocyte apoptosis via the involvement of endoplasmic reticulum stress and mitochondrial death pathways. Here we tested the hypothesis that OPN induces oxidative stress in myocytes and the heart via the involvement of mitochondria and NADPH oxidase-4 (NOX-4). Treatment of adult rat ventricular myocytes (ARVMs) with OPN (20 nM) increased oxidative stress as analyzed by protein carbonylation, and intracellular reactive oxygen species (ROS) levels as analyzed by ROS detection kit and dichlorohydrofluorescein diacetate staining. Pretreatment with NAC (antioxidant), apocynin (NOX inhibitor), MnTBAP (superoxide dismutase mimetic), and mitochondrial KATP channel blockers (glibenclamide and 5-hydroxydecanoate) decreased OPN-stimulated ROS production, cytosolic cytochrome c levels, and apoptosis. OPN increased NOX-4 expression, while decreasing SOD-2 expression. OPN decreased mitochondrial membrane potential as measured by JC-1 staining, and induced mitochondrial abnormalities including swelling and reorganization of cristae as observed using transmission electron microscopy. OPN increased expression of BIK, a pro-apoptotic protein involved in reorganization of mitochondrial cristae. Expression of dominant-negative BIK decreased OPN-stimulated apoptosis. In vivo, OPN expression in cardiac myocyte-specific manner associated with increased protein carbonylation, and expression of NOX-4 and BIK. Thus, OPN induces oxidative stress via the involvement of mitochondria and NOX-4. It may affect mitochondrial morphology and integrity, at least in part, via the involvement of BIK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

OPN:

Osteopontin

ARVMs:

Adult rat ventricular myocytes

ROS:

Reactive oxygen species

NADPH oxidase:

Nicotinamide adenine dinucleotide phosphate-oxidase

NOX:

NADPH oxidase

NAC:

N-acetyl-l-cysteine

SOD-2:

Mitochondrial superoxide dismutase-2

DMEM:

Dulbecco’s modified eagle medium

APO:

Apocynin

GLIB:

Glibenclamide

5-HD:

5-hydroxydecanoate

H2DCFDA:

2′,7′-dichlorohydrofluorescein diacetate

mitoKATP :

Mitochondrial KATP channels

MnTBAP:

Manganese (III) tetrakis (4-benzoic acid) porphyrin

CTL:

Control

MAM:

Mitochondrial-associated endoplasmic reticulum membrane

MHC-OPN:

OPN transgenic mice

Mut BIK:

Mutant BIK

ER:

Endoplasmic reticulum

References

  1. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh M, Foster CR, Dalal S, Singh K (2010) Osteopontin: role in extracellular matrix deposition and myocardial remodeling post-MI. J Mol Cell Cardiol 48:538–543

    Article  CAS  PubMed  Google Scholar 

  3. Singh M, Dalal S, Singh K (2014) Osteopontin: at the cross-roads of myocyte survival and myocardial function. Life Sci 118:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    Article  CAS  PubMed  Google Scholar 

  5. Denhardt DT, Noda M, O’Regan AW et al (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kahles F, Findeisen HM, Bruemmer D (2014) Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab 3:384–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsui Y, Jia N, Okamoto H et al (2004) Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension 43:1195–1201

    Article  CAS  PubMed  Google Scholar 

  8. Satoh M, Nakamura M, Akatsu T et al (2005) Myocardial osteopontin expression is associated with collagen fibrillogenesis in human dilated cardiomyopathy. Eur J Heart Fail 7:755–762

    Article  CAS  PubMed  Google Scholar 

  9. Subramanian V, Krishnamurthy P, Singh K, Singh M (2007) Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 292:H673–H683

    Article  CAS  PubMed  Google Scholar 

  10. Sam F, Xie Z, Ooi H et al (2004) Mice lacking osteopontin exhibit increased left ventricular dilation and reduced fibrosis after aldosterone infusion. Am J Hypertens 17:188–193

    Article  CAS  PubMed  Google Scholar 

  11. Renault MA, Robbesyn F, Reant P et al (2010) Osteopontin expression in cardiomyocytes induces dilated cardiomyopathy. Circ Heart Fail 3:431–439

    Article  CAS  PubMed  Google Scholar 

  12. Dalal S, Zha Q, Daniels CR et al (2014) Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. Am J Physiol Heart Circ Physiol 306:H1182–H1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sugamura K, Keaney JF (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51:978–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun L, Fan H, Yang L et al (2015) Tyrosol prevents ischemia/reperfusion-induced cardiac injury in H9c2 cells: involvement of ROS, Hsp70, JNK and ERK, and apoptosis. Molecules 20:3758–3775

    Article  CAS  PubMed  Google Scholar 

  15. Vichova T, Motovska Z (2013) Oxidative stress: predictive marker for coronary artery disease. Exp Clin Cardiol 18:e88–e91

    PubMed  PubMed Central  Google Scholar 

  16. Ago T, Kuroda J, Pain J et al (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301

    Article  CAS  PubMed  Google Scholar 

  18. Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  19. Kuroda J, Ago T, Matsushima S et al (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 107:15565–15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bravo-Sagua R, Rodriguez AE, Kuzmicic J et al (2013) Cell death and survival through the endoplasmic reticulum-mitochondrial axis. Curr Mol Med 13:317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Germain M, Mathai JP, Shore GC (2002) BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J Biol Chem 277:18053–18060

    Article  CAS  PubMed  Google Scholar 

  23. Hegde R, Srinivasula SM, Ahmad M et al (1998) Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist. J Biol Chem 273:7783–7786

    Article  CAS  PubMed  Google Scholar 

  24. Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coultas L, Bouillet P, Stanley EG et al (2004) Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 24:1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Irita J, Okura T, Jotoku M et al (2011) Osteopontin deficiency protects against aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney. Am J Physiol Ren Physiol 301:F833–F844

    Article  CAS  Google Scholar 

  27. Wolak T, Kim H, Ren Y et al (2009) Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int 76:32–43

    Article  CAS  PubMed  Google Scholar 

  28. Deka S, Vanover J, Sun J et al (2007) An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol 9:725–737

    Article  CAS  PubMed  Google Scholar 

  29. Dalle-Donne I, Aldini G, Carini M et al (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  PubMed  Google Scholar 

  30. Luk E, Carroll M, Baker M, Culotta VC (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci USA 100:10353–10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  32. Lai C-F, Seshadri V, Huang K et al (2006) An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res 98:1479–1489

    Article  CAS  PubMed  Google Scholar 

  33. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  CAS  PubMed  Google Scholar 

  34. Holmuhamedov EL, Jovanović S, Dzeja PP et al (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    CAS  PubMed  Google Scholar 

  35. Hu H, Sato T, Seharaseyon J et al (1999) Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Mol Pharmacol 55:1000–1005

    CAS  PubMed  Google Scholar 

  36. Garlid KD, Paucek P, Yarov-Yarovoy V et al (1996) The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271:8796–8799

    Article  CAS  PubMed  Google Scholar 

  37. Nolly MB, Caldiz CI, Yeves AM et al (2014) The signaling pathway for aldosterone-induced mitochondrial production of superoxide anion in the myocardium. J Mol Cell Cardiol 67:60–68

    Article  CAS  PubMed  Google Scholar 

  38. Zhang DX, Chen YF, Campbell WB et al (2001) Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res 89:1177–1183

    Article  CAS  PubMed  Google Scholar 

  39. Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zong WX, Li C, Hatzivassiliou G et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han J, Sabbatini P, White E (1996) Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol Cell Biol 16:5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chinnadurai G, Vijayalingam S, Rashmi R (2008) BIK, the founding member of the BH3-only family proteins: mechanisms of cell death and role in cancer and pathogenic processes. Oncogene 27(Suppl 1):S20–S29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors appreciate the technical help received from Dr. Dennis Defoe, Dr. Robert V. Schoborg, Mr. Rolf Fritz, Ms. Jennifer Kintner, and Ms. Barbara A. Connelly.

Funding

This work was supported by Merit Review awards (BX002332 and BX000640) from the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development, National Institutes of Health (R15HL129140), and funds from Institutional Research and Improvement account (to KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Singh.

Ethics declarations

Conflicts of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, S., Zha, Q., Singh, M. et al. Osteopontin-stimulated apoptosis in cardiac myocytes involves oxidative stress and mitochondrial death pathway: role of a pro-apoptotic protein BIK. Mol Cell Biochem 418, 1–11 (2016). https://doi.org/10.1007/s11010-016-2725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2725-y

Keywords

Navigation