Skip to main content

Advertisement

Log in

Identification and profiling of miRNAs in the freeze-avoiding gall moth Epiblema scudderiana via next-generation sequencing

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The rapid development of high-throughput next-generation sequencing approaches in recent years has facilitated large-scale discovery and expression analysis of non-coding RNAs, including miRNAs, in traditional and non-traditional animal models. Such an approach has been leveraged to amplify, identify, and quantify miRNAs in several models of cold adaptation. The present study is the first to investigate the status of these small RNAs in an insect species that uses the freeze avoidance strategy of cold hardiness, the gall moth Epiblema scudderiana. To characterize the overall miRNA expression profile and to identify cold-modulated miRNAs in control (5 °C) and cold-exposed (−15 °C) E. scudderiana larvae, a next-generation sequencing-based approach was undertaken. A total of 44 differentially expressed miRNAs were identified between the two conditions; 21 up-regulated miRNAs and 23 down-regulated miRNAs in −15 °C-exposed larvae as compared with controls. Among the most significant changes observed in miRNAs with potential relevance to cold adaptation were elevated miR-1-3p, miR-92b-3p, and miR-133-3p levels as well as reduced miR-13a-3p and miR-13b-3p levels in E. scudderiana larvae exposed to cold temperatures. Expression values obtained from next-generation sequencing were also validated by a quantitative PCR approach for five miRNAs; miR-34-5p, miR-274-5p, miR-275-3p, miR-307a-3p, and miR-316-5p. Overall, this work provides the first description of a miRNA signature for subzero survival by a freeze-avoiding insect using a high-throughput approach and positions a new group of miRNAs at the forefront of the molecular changes underlying cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kelleher MJ, Rickards J, Storey KB (1987) Strategies of freeze avoidance in larvae of the goldenrod gall moth, Epiblema scudderiana: laboratory investigations of temperature cues in the regulation of cold-hardiness. J Insect Physiol 33:581–586

    Article  Google Scholar 

  2. Rickards J, Kelleher MJ, Storey KB (1987) Strategies of freeze avoidance in the larvae of the goldenrod gall moth, Epiblema scudderiana: winter profiles of a natural population. J Insect Physiol 33:443–450

    Article  Google Scholar 

  3. McMullen DC, Ramnanan CJ, Storey KB (2010) In cold-hardy insects, seasonal, temperature, and reversible phosphorylation controls regulate sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Physiol Biochem Zool 83:677–686

    Article  CAS  PubMed  Google Scholar 

  4. Holden HA, Storey KB (2011) Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: role in glycerol metabolism. Arch Insect Biochem Physiol 77:32–44

    Article  CAS  PubMed  Google Scholar 

  5. McMullen DC, Storey KB (2008) Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem Mol Biol 38:367–373

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Morin P Jr, Dubuc A, Storey KB (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta 1779:628–633

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Hu W, Wang H, Lu M, Shao C, Menzel C, Yan Z, Li Y, Zhao S, Khaitovich P, Liu M, Chen W, Barnes BM, Yan J (2010) Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel. Physiol Genom 42A:39–51

    Article  CAS  Google Scholar 

  10. Lyons PJ, Poitras JJ, Courteau LA, Storey KB, Morin P Jr (2013) Identification of differentially regulated microRNAs in cold-hardy insects. Cryo Lett 34:83–89

    CAS  Google Scholar 

  11. Chen B, Zhang B, Luo H, Yuan J, Skogerbø G, Chen R (2012) Distinct MicroRNA subcellular size and expression patterns in human cancer cells. Int J Cell Biol 2012:672462

    PubMed Central  PubMed  Google Scholar 

  12. Lau K, Lai KP, Bao JY, Zhang N, Tse A, Tong A, Li JW, Lok S, Kong RY, Lui WY, Wong A, Wu RS (2014) Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One 9:e110698

    Article  PubMed Central  PubMed  Google Scholar 

  13. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen M, Zhang X, Liu J, Storey KB (2013) High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS One 8:e76120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chen M, Storey KB (2014) Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation. Mar Genom 13:39–44

    Article  CAS  Google Scholar 

  16. Etebari K, Asgari S (2013) Conserved microRNA miR-8 blocks activation of the Toll pathway by upregulating serpin 27 transcripts. RNA Biol 10:1356–1364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wen JZ, Liao JY, Zheng LL, Xu H, Yang JH, Guan DG, Zhang SM, Zhou H, Qu LH (2014) A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources. PLoS One 9:e88179

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hackenberg M, Sturm M, Langenberger D, Falcón-Pérez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Etebari K, Asgari S (2014) Accuracy of microRNA discovery pipelines in non-model organisms using closely related species genomes. PLoS One 9:e84747

    Article  PubMed Central  PubMed  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Biggar KK, Kornfeld SF, Storey KB (2011) Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem-loop reverse transcription-polymerase chain reaction. Anal Biochem 416:231–233

    Article  CAS  PubMed  Google Scholar 

  22. Lang-Ouellette D, Morin P Jr (2014) Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. Mol Cell Biochem 394:291–298

    Article  CAS  PubMed  Google Scholar 

  23. Andersen CL, Ledet-Jensen J, Ørntoft T (2004) Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization—applied to bladder- and colon-cancer data-sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Courteau LA, Storey KB, Morin P Jr (2012) Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. Cryobiology 65:210–214

    Article  CAS  PubMed  Google Scholar 

  29. Rubio M, Montanez R, Perez L, Milan M, Belles X (2013) Regulation of atrophin by both strands of the miR-8 precursor. Insect Biochem Mol Biol 43:1009–1014

    Article  CAS  PubMed  Google Scholar 

  30. Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN (2009) Conserved microRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139:1096–1108

    Article  CAS  PubMed  Google Scholar 

  31. Kennell JA, Gerin I, MacDougald OA, Cadigan KM (2008) The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci USA 105:15417–15422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Volk N, Shomron N (2011) Versatility of MicroRNA biogenesis. PLoS One 6:e19391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ho JJ, Metcalf JL, Yan MS, Turgeon PJ, Wang JJ, Chalsev M, Petruzziello-Pellegrini TN, Tsui AK, He JZ, Dhamko H, Man HS, Robb GB, Teh BT, Ohh M, Marsden PA (2012) Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 287:29003–29020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dutta S, Baehrecke EH (2008) Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 18:1466–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wu CW, Storey KB (2012) Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels. J Exp Biol 215:1720–1727

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Storey KB (2013) Akt signaling and freezing survival in the wood frog, Rana sylvatica. Biochim Biophys Acta 1830:4828–4837

    Article  CAS  PubMed  Google Scholar 

  38. Chen Z, Liang S, Zhao Y, Han Z (2012) miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development. Development 139:3543–3552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Li Y, Li L, Guan Y, Liu X, Meng Q, Guo Q (2013) MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non-small cell lung cancer cell line and target PTEN. Biochem Biophys Res Commun 440:604–610

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Zheng Y, Cao X, Ren R, Yo X, Jiang H (2014) Identification and profiling of Manduca sexta microRNAs and their possible roles in regulating specific transcripts in fat body, hemocytes, and midgut. Insect Biochem Mol Biol 62:11–22

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zhang G, Storey JM, Storey KB (2011) Chaperone proteins and winter survival by a freeze tolerant insect. J Insect Physiol 57:1115–1122

    Article  CAS  PubMed  Google Scholar 

  42. Biggar KK, Kornfeld SF, Maistrovski Y, Storey KB (2012) MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. Genom Proteom Bioinform 10:302–309

    Article  CAS  Google Scholar 

  43. Lyons PJ, Lang-Ouellette D, Morin P Jr (2013) CryomiRs: towards the identification of a cold-associated family of microRNAs. Comp Biochem Physiol Part D 8:358–364

    CAS  Google Scholar 

  44. Wu CW, Biggar KK, Storey KB (2013) Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene 529:269–275

    Article  CAS  PubMed  Google Scholar 

  45. Baldwin J, Aleksiuk M (1973) Adaptation of enzymes of temperature: lactate and malate dehydrogenases from platypus and echidna. Comp Biochem Physiol Part B 44:363–370

    Article  CAS  Google Scholar 

  46. Olsson SO (1975) Comparative studies on the temperature dependence of lactic and malic dehydrogenase from a homeotherm, guinea pig (Cavia porcellus); two hibernators, hedgehog (Erinaceus europaeus) and bat (Nyctalus noctula); and two poikilotherms, frog (Rana temporaria) and cod (Gadus callarias). Comp Biochem Physiol Part B 15:5–18

    Article  Google Scholar 

  47. Zhang W, Cohen SM (2013) The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth. Biol Open 2:822–828

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lozano J, Montañez R, Belles X (2015) MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proc Natl Acad Sci USA 112:3740–3745

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Fleck CC, Carey HV (2005) Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Physiol Regul Integr Comp Physiol 289:R586–R595

    Article  CAS  PubMed  Google Scholar 

  50. Rouble AN, Hefler J, Mamady H, Storey KB, Tessier SN (2013) Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation. PeerJ 1:e29

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ramnanan CJ, Groom AG, Storey KB (2007) Akt and its downstream targets play key roles in mediating dormancy in land snails. Comp Biochem Physiol B 148:245–255

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. M. Storey for editorial review of the manuscript. This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN/402222-2012) awarded to P. J. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Jr Morin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, P.J., Crapoulet, N., Storey, K.B. et al. Identification and profiling of miRNAs in the freeze-avoiding gall moth Epiblema scudderiana via next-generation sequencing. Mol Cell Biochem 410, 155–163 (2015). https://doi.org/10.1007/s11010-015-2547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2547-3

Keywords

Navigation