Skip to main content

Advertisement

Log in

Cross-talk between macrophages, smooth muscle cells, and endothelial cells in response to cigarette smoke: the effects on MMP2 and 9

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We hypothesized that matrix metalloproteinase secretion in response to cigarette smoke is modulated by cross-talk between resident cells within the aorta, namely, aortic smooth muscles, endothelial cells, and infiltrating macrophages, and this may be crucial for in vivo formation/progression of abdominal aortic aneurysm (AAA). Cigarette smoke extract (CSE) was applied to rat aortic smooth muscle (RASMC), endothelial (RAEC) or RAW cells, and conditioned media (CSE-CM) collected. Fresh cells were treated with CSE-CM for 24 h and then maintained in serum-free medium (SFM) for 72 h to analyze MMP2 and MMP9 in media by zymography and the ratio (pS/pJ) of phospho-Stat3 (pStat3) and phospho-Jak2 (pJak2) inside the cells by Western blot. We observed that CSE-CM from RAW and RAEC increased MMP9 by 200 and 17 %, respectively, in RASMC and also increased pS/pJ ratio (305 and 228 %, respectively) in RASMC. RAW cell-derived CSE-CM induced RAEC to produce moderate amounts of MMP2 (17 %), MMP9 (30 %), and a 137 % increase in pS/pJ. RAW cells receiving unstimulated CM from RASMC and RAEC produced significant amounts of MMP9 (128 and 155 %, respectively) and increased pS/pJ (45 and 1283 %, respectively). CSE-CM from RASMC and RAEC induced significant production of MMP9 from RAW cells (237 and 162 %, respectively) and increase in pS/pJ ratios (1348 and 1494 %, respectively). This is the first in vitro study demonstrating cigarette smoke extract-mediated differential interactions between resident cells in the aorta leads to altered modulation of signaling molecules that may be vital for AAA formation under in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eagleton MJ, Ballard N, Lynch E, Srivastava SD, Upchurch GR Jr, Stanley JC (2006) Early increased MT1-MMP expression and late MMP-2 and MMP-9 activity during Angiotensin II induced aneurysm formation. J Surg Res 135:345–351. doi:10.1016/j.jss.2006.03.026

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh A, DiMusto PD, Ehrlichman LK, Sadiq O, McEvoy B, Futchko JS, Henke PK, Eliason JL, Upchurch GR Jr (2012) The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg 215(668–680):e1. doi:10.1016/j.jamcollsurg.2012.06.414

    PubMed  Google Scholar 

  3. Goodall S, Crowther M, Hemingway DM, Bell PR, Thompson MM (2001) Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation 104:304–309

    Article  CAS  PubMed  Google Scholar 

  4. Pearce WH, Shively VP (2006) Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann N Y Acad Sci 1085:117–132. doi:10.1196/annals.1383.025

    Article  CAS  PubMed  Google Scholar 

  5. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632. doi:10.1172/jci15334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Petersen E, Gineitis A, Wagberg F, Angquist KA (2000) Activity of matrix metalloproteinase-2 and -9 in abdominal aortic aneurysms. Relation to size and rupture. Eur J Vasc Endovasc Surg 20:457–461. doi:10.1053/ejvs.2000.1211

    Article  CAS  PubMed  Google Scholar 

  7. Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR, Thompson MM (2006) Matrix metalloproteinase-8 and -9 are increased at the site of abdominal aortic aneurysm rupture. Circulation 113:438–445. doi:10.1161/circulationaha.105.551572

    Article  CAS  PubMed  Google Scholar 

  8. DiMusto PD, Lu G, Ghosh A, Roelofs KJ, Sadiq O, McEvoy B, Su G, Laser A, Bhamidipati CM, Ailawadi G, Henke PK, Eliason JL, Upchurch GR Jr (2012) Increased JNK in males compared with females in a rodent model of abdominal aortic aneurysm. J Surg Res 176:687–695. doi:10.1016/j.jss.2011.11.1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ghosh A, Lu G, Su G, McEvoy B, Sadiq O, DiMusto PD, Laser A, Futchko JS, Henke PK, Eliason JL, Upchurch GR Jr (2014) Phosphorylation of AKT and abdominal aortic aneurysm formation. Am J Pathol 184:148–158. doi:10.1016/j.ajpath.2013.09.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liao M, Xu J, Clair AJ, Ehrman B, Graham LM, Eagleton MJ (2012) Local and systemic alterations in signal transducers and activators of transcription (STAT) associated with human abdominal aortic aneurysms. J Surg Res 176:321–328. doi:10.1016/j.jss.2011.05.041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Newby AC (2012) Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 56:232–244. doi:10.1016/j.vph.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia MC, Chen H, Xiang MX, He AN, Wang Y, Xiong N, Libby P, Wang JA, Shi GP (2014) IgE actions on CD4(+) T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. Embo Mol Med 6:952–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. English SJ, Piert MR, Diaz JA, Gordon D, Ghosh A, D’Alecy LG, Whitesall SE, Sharma AK, Deroo EP, Watt T, Su G, Henke PK, Eliason JL, Ailawadi G, Upchurch GR Jr (2014) Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg. doi:10.1097/SLA.0000000000000602

    Google Scholar 

  14. Ehrlichman LK, Ford JW, Roelofs KJ, Tedeschi-Filho W, Futchko JS, Ramacciotti E, Eliason JL, Henke PK, Upchurch GR Jr (2010) Gender-dependent differential phosphorylation in the ERK signaling pathway is associated with increased MMP2 activity in rat aortic smooth muscle cells. J Surg Res 160:18–24. doi:10.1016/j.jss.2009.03.095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bergoeing MP, Arif B, Hackmann AE, Ennis TL, Thompson RW, Curci JA (2007) Cigarette smoking increases aortic dilatation without affecting matrix metalloproteinase-9 and -12 expression in a modified mouse model of aneurysm formation. J Vasc Surg 45:1217–1227. doi:10.1016/j.jvs.2007.01.058

    Article  PubMed  Google Scholar 

  16. Lemaitre V, Dabo AJ, D’Armiento J (2011) Cigarette smoke components induce matrix metalloproteinase-1 in aortic endothelial cells through inhibition of mTOR signaling. Toxicol Sci 123:542–549. doi:10.1093/toxsci/kfr181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kim SE, Thanh Thuy TT, Lee JH, Ro JY, Bae YA, Kong Y, Ahn JY, Lee DS, Oh YM, Lee SD, Lee YS (2009) Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract. Exp Mol Med 41:277–287. doi:10.3858/emm.2009.41.4.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Facchinetti F, Amadei F, Geppetti P, Tarantini F, Di Serio C, Dragotto A, Gigli PM, Catinella S, Civelli M, Patacchini R (2007) Alpha, beta-unsaturated aldehydes in cigarette smoke release inflammatory mediators from human macrophages. Am J Respir Cell Mol Biol 37:617–623. doi:10.1165/rcmb.2007-0130OC

    Article  CAS  PubMed  Google Scholar 

  19. Matthews JB, Chen FM, Milward MR, Ling MR, Chapple IL (2012) Neutrophil superoxide production in the presence of cigarette smoke extract, nicotine and cotinine. J Clin Periodontol 39:626–634. doi:10.1111/j.1600-051X.2012.01894.x

    Article  CAS  PubMed  Google Scholar 

  20. Moretto N, Bertolini S, Iadicicco C, Marchini G, Kaur M, Volpi G, Patacchini R, Singh D, Facchinetti F (2012) Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. Am J Physiol Lung Cell Mol Physiol 303:L929–L938. doi:10.1152/ajplung.00046.2012

    Article  CAS  PubMed  Google Scholar 

  21. Yamada S, Zhang XQ, Kadono T, Matsuoka N, Rollins D, Badger T, Rodesch CK, Barry WH (2009) Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Toxicol Appl Pharmacol 236:71–77. doi:10.1016/j.taap.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  22. Watanabe A, Ichiki T, Sankoda C, Takahara Y, Ikeda J, Inoue E, Tokunou T, Kitamoto S, Sunagawa K (2014) Suppression of abdominal aortic aneurysm formation by inhibition of prolyl hydroxylase domain protein through attenuation of inflammation and extracellular matrix disruption. Clin Sci (Lond) 126:671–678. doi:10.1042/cs20130435

    Article  CAS  Google Scholar 

  23. Domeij H, Modeer T, Quezada HC, Yucel-Lindberg T (2005) Cell expression of MMP-1 and TIMP-1 in co-cultures of human gingival fibroblasts and monocytes: the involvement of ICAM-1. Biochem Biophys Res Commun 338:1825–1833. doi:10.1016/j.bbrc.2005.10.137

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K (2012) Matrix metalloprotein-9 activation under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factor-alpha. Heart Vessels 27:624–633. doi:10.1007/s00380-011-0214-5

    Article  PubMed  Google Scholar 

  25. Verschuren L, Lindeman JH, van Bockel JH, Abdul-Hussien H, Kooistra T, Kleemann R (2005) Up-regulation and coexpression of MIF and matrix metalloproteinases in human abdominal aortic aneurysms. Antioxid Redox Signal 7:1195–1202. doi:10.1089/ars.2005.7.1195

    Article  CAS  PubMed  Google Scholar 

  26. Dreier R, Grassel S, Fuchs S, Schaumburger J, Bruckner P (2004) Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res 297:303–312. doi:10.1016/j.yexcr.2004.02.027

    Article  CAS  PubMed  Google Scholar 

  27. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, Eckstein HH (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76:243–252. doi:10.1159/000228900

    Article  CAS  PubMed  Google Scholar 

  28. Dreier R, Wallace S, Fuchs S, Bruckner P, Grassel S (2001) Paracrine interactions of chondrocytes and macrophages in cartilage degradation: articular chondrocytes provide factors that activate macrophage-derived pro-gelatinase B (pro-MMP-9). J Cell Sci 114:3813–3822

    CAS  PubMed  Google Scholar 

  29. Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA (2006) Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J 20:2093–2101. doi:10.1096/fj.06-6191com

    Article  CAS  PubMed  Google Scholar 

  30. Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, Pan JF, Yan J, Hu JH, Wang Z, Dai Z, Fan J, Zhou J (2011) IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 10:150. doi:10.1186/1476-4598-10-150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kiu H, Nicholson SE (2012) Biology and significance of the JAK/STAT signalling pathways. Growth Factors 30:88–106. doi:10.3109/08977194.2012.660936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Reich NC (2013) STATs get their move on. JAKSTAT 2:e27080. doi:10.4161/jkst.27080

    PubMed Central  PubMed  Google Scholar 

  33. Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36:503–514. doi:10.1016/j.immuni.2012.03.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Aida Y, Honda K, Tanigawa S, Nakayama G, Matsumura H, Suzuki N, Shimizu O, Takeichi O, Makimura M, Maeno M (2012) IL-6 and soluble IL-6 receptor stimulate the production of MMPs and their inhibitors via JAK-STAT and ERK-MAPK signalling in human chondrocytes. Cell Biol Int 36:367–376. doi:10.1042/cbi20110150

    Article  CAS  PubMed  Google Scholar 

  35. Simonaro CM, Ge Y, Eliyahu E, He XX, Jepsen KJ, Schuchman EH (2010) Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc Natl Acad Sci USA 107:222–227. doi:10.1073/pnas.0912937107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Harris JE, Fernandez-Vilaseca M, Elkington PT, Horncastle DE, Graeber MB, Friedland JS (2007) IFNgamma synergizes with IL-1beta to up-regulate MMP-9 secretion in a cellular model of central nervous system tuberculosis. FASEB J 21:356–365. doi:10.1096/fj.06-6925com

    Article  CAS  PubMed  Google Scholar 

  37. Navab M, Liao F, Hough GP, Ross LA, Van Lenten BJ, Rajavashisth TB, Lusis AJ, Laks H, Drinkwater DC, Fogelman AM (1991) Interaction of monocytes with cocultures of human aortic wall cells involves interleukins 1 and 6 with marked increases in connexin43 message. J Clin Invest 87:1763–1772. doi:10.1172/jci115195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Butoi ED, Gan AM, Manduteanu I, Stan D, Calin M, Pirvulescu M, Koenen RR, Weber C, Simionescu M (2011) Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. Biochim Biophys Acta 1813:2026–2035. doi:10.1016/j.bbamcr.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Nakarai H, Yamashita A, Nagayasu S, Iwashita M, Kumamoto S, Ohyama H, Hata M, Soga Y, Kushiyama A, Asano T, Abiko Y, Nishimura F (2012) Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation: potential link with metabolic complications. Innate Immun 18:164–170. doi:10.1177/1753425910393370

    Article  CAS  PubMed  Google Scholar 

  40. Sundararaj KP, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y (2009) Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J Biol Chem 284:13714–13724. doi:10.1074/jbc.M806573200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bittner K, Vischer P, Bartholmes P, Bruckner P (1998) Role of the subchondral vascular system in endochondral ossification: endothelial cells specifically derepress late differentiation in resting chondrocytes in vitro. Exp Cell Res 238:491–497. doi:10.1006/excr.1997.3849

    Article  CAS  PubMed  Google Scholar 

  42. Coulson-Thomas VJ, Gesteira TF, Coulson-Thomas YM, Vicente CM, Tersariol IL, Nader HB, Toma L (2010) Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-beta, and extracellular matrix down-regulation. Exp Cell Res 316:3207–3226. doi:10.1016/j.yexcr.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  43. Corotti MV, Zambuzzi WF, Paiva KB, Menezes R, Pinto LC, Lara VS, Granjeiro JM (2009) Immunolocalization of matrix metalloproteinases-2 and -9 during apical periodontitis development. Arch Oral Biol 54:764–771. doi:10.1016/j.archoralbio.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Napoleone E, Di Santo A, Lorenzet R (1997) Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood 89:541–549

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Aortic Research Center of the Jobst Vascular Research Laboratory at the University of Michigan extends a heartfelt thank you to A. J. Bartoletto for his ongoing support of aortic aneurysm research. This work was supported by the Frankel Cardiovascular Center of the University of Michigan to JLE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Eliason.

Ethics declarations

Conflict of interest

None.

Disclosures

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Pechota, L.V.T.A., Upchurch, G.R. et al. Cross-talk between macrophages, smooth muscle cells, and endothelial cells in response to cigarette smoke: the effects on MMP2 and 9. Mol Cell Biochem 410, 75–84 (2015). https://doi.org/10.1007/s11010-015-2539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2539-3

Keywords

Navigation