Skip to main content

Advertisement

Log in

Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

System Xc- is a cystine/glutamate antiporter that contributes to the maintenance of cellular redox balance. The human xCT (SLC7A11) gene encodes the functional subunit of system Xc-. Transcription factors regulating antioxidant defense mechanisms including system Xc- are of therapeutic interest, especially given that aggressive breast cancer cells exhibit increased system Xc- function. This investigation provides evidence that xCT expression is regulated by STAT3 and/or STAT5A, functionally affecting the antiporter in human breast cancer cells. Computationally analyzing two kilobase pairs of the xCT promoter/5′ flanking region identified a distal gamma-activated site (GAS) motif, with truncations significantly increasing luciferase reporter activity. Similar transcriptional increases were obtained after treating cells transiently transfected with the full-length xCT promoter construct with STAT3/5 pharmacological inhibitors. Knock-down of STAT3 or STAT5A with siRNAs produced similar results. However, GAS site mutation significantly reduced xCT transcriptional activity, suggesting that STATs may interact with other transcription factors at more proximal promoter sites. STAT3 and STAT5A were bound to the xCT promoter in MDA-MB-231 cells, and binding was disrupted by pre-treatment with STAT inhibitors. Pharmacologically suppressing STAT3/5 activation significantly increased xCT mRNA and protein levels, as well as cystine uptake, glutamate release, and total levels of intracellular glutathione. Our data suggest that STAT proteins negatively regulate basal xCT expression. Blocking STAT3/5-mediated signaling induces an adaptive, compensatory mechanism to protect breast cancer cells from stress, including reactive oxygen species, by up-regulating xCT expression and the function of system Xc-. We propose that targeting system Xc- together with STAT3/5 inhibitors may heighten therapeutic anti-cancer effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555. doi:10.1089/ars.2011.4391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400. doi:10.1016/j.ccr.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  3. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, Takahashi S, Bannai S (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429. doi:10.1074/jbc.M506439200

    Article  CAS  PubMed  Google Scholar 

  4. Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602. doi:10.1002/jcp.21366

    Article  CAS  PubMed  Google Scholar 

  5. Chen RS, Song YM, Zhou ZY, Tong T, Li Y, Fu M, Guo XL, Dong LJ, He X, Qiao HX, Zhan QM, Li W (2009) Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 28:599–609. doi:10.1038/onc.2008.414

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Dai Z, Barbacioru C, Sadee W (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454. doi:10.1158/0008-5472.CAN-04-4267

    Article  CAS  PubMed  Google Scholar 

  7. Pham AN, Blower PE, Alvarado O, Ravula R, Gout PW, Huang Y (2010) Pharmacogenomic approach reveals a role for the x(c)- cystine/glutamate antiporter in growth and celastrol resistance of glioma cell lines. J Pharmacol Exp Ther 332:949–958. doi:10.1124/jpet.109.162248

    Article  CAS  PubMed  Google Scholar 

  8. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542. doi:10.1007/s00424-003-1086-z

    Article  CAS  PubMed  Google Scholar 

  9. Bannai S (1984) Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. J Biol Chem 259:2435–2440

    CAS  PubMed  Google Scholar 

  10. Sato H, Nomura S, Maebara K, Sato K, Tamba M, Bannai S (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116. doi:10.1016/j.bbrc.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  11. Bannai S, Sato H, Ishii T, Sugita Y (1989) Induction of cystine transport activity in human fibroblasts by oxygen. J Biol Chem 264:18480–18484

    CAS  PubMed  Google Scholar 

  12. Sato H, Fujiwara K, Sagara J, Bannai S (1995) Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem J 310(Pt 2):547–551

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Jackman NA, Uliasz TF, Hewett JA, Hewett SJ (2010) Regulation of system x(c)(-)activity and expression in astrocytes by interleukin-1 beta: implications for hypoxic neuronal injury. Glia 58:1806–1815. doi:10.1002/glia.21050

    Article  PubMed  Google Scholar 

  14. Sims B, Clarke M, Njah W, Hopkins ES, Sontheimer H (2010) Erythropoietin-induced neuroprotection requires cystine glutamate exchanger activity. Brain Res 1321:88–95. doi:10.1016/j.brainres.2010.01.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu X, Resch J, Rush T, Lobner D (2012) Functional upregulation of system xc- by fibroblast growth factor-2. Neuropharmacology 62:901–906. doi:10.1016/j.neuropharm.2011.09.019

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Yee D (2014) IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC. Cancer Res 74:2295–2305. doi:10.1158/0008-5472.CAN-13-1803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lall MM, Ferrell J, Nagar S, Fleisher LN, McGahan MC (2008) Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase. Invest Ophthalmol Vis Sci 49:310–319. doi:10.1167/iovs.07-1041

    Article  PubMed  Google Scholar 

  18. Du J, Li XH, Zhang W, Yang YM, Wu YH, Li WQ, Peng J, Li YJ (2014) Involvement of glutamate-cystine/glutamate transporter system in aspirin-induced acute gastric mucosa injury. Biochem Biophys Res Commun 450:135–141. doi:10.1016/j.bbrc.2014.05.069

    Article  CAS  PubMed  Google Scholar 

  19. Lin X, Yang H, Zhang H, Zhou L, Guo Z (2013) A novel transcription mechanism activated by ethanol: induction of Slc7a11 gene expression via inhibition of the DNA-binding activity of transcriptional repressor octamer-binding transcription factor 1 (OCT-1). J Biol Chem 288:14815–14823. doi:10.1074/jbc.M113.466565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, He M, Chen GQ, He JR, Zhao Q (2011) MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett 585:1363–1367. doi:10.1016/j.febslet.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  21. Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443. doi:10.1016/j.tem.2009.05.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ye P, Mimura J, Okada T, Sato H, Liu T, Maruyama A, Ohyama C, Itoh K (2014) Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol Cell Biol 34:3421–3434. doi:10.1128/MCB.00221-14

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789. doi:10.1080/03602530600971974

    Article  CAS  PubMed  Google Scholar 

  25. Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336. doi:10.1002/jcp.1041330217

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771. doi:10.1074/jbc.M208704200

    Article  CAS  PubMed  Google Scholar 

  27. Tsujita T, Peirce V, Baird L, Matsuyama Y, Takaku M, Walsh SV, Griffin JL, Uruno A, Yamamoto M, Hayes JD (2014) Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes. Mol Cell Biol 34:3800–3816. doi:10.1128/MCB.00110-14

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yamamoto M, Takeda K (2010) Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract 2010:240365. doi:10.1155/2010/240365

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sato H, Kuriyama-Matsumura K, Hashimoto T, Sasaki H, Wang H, Ishii T, Mann GE, Bannai S (2001) Effect of oxygen on induction of the cystine transporter by bacterial lipopolysaccharide in mouse peritoneal macrophages. J Biol Chem 276:10407–10412. doi:10.1074/jbc.M007216200

    Article  CAS  PubMed  Google Scholar 

  30. Gupta S (2002) A decision between life and death during TNF-alpha-induced signaling. J Clin Immunol 22:185–194

    Article  CAS  PubMed  Google Scholar 

  31. Lastro M, Kourtidis A, Farley K, Conklin DS (2008) xCT expression reduces the early cell cycle requirement for calcium signaling. Cell Signal 20:390–399. doi:10.1016/j.cellsig.2007.10.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kobierski LA, Srivastava S, Borsook D (2000) Systemic lipopolysaccharide and interleukin-1 beta activate the interleukin 6: STAT intracellular signaling pathway in neurons of mouse trigeminal ganglion. Neurosci Lett 281:61–64

    Article  CAS  PubMed  Google Scholar 

  33. Miscia S, Marchisio M, Grilli A, Di Valerio V, Centurione L, Sabatino G, Garaci F, Zauli G, Bonvini E, Di Baldassarre A (2002) Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell Growth Differ 13:13–18

    CAS  PubMed  Google Scholar 

  34. Bittorf T, Jaster R, Ludtke B, Kamper B, Brock J (1997) Requirement for JAK2 in erythropoietin-induced signalling pathways. Cell Signal 9:85–89

    Article  CAS  PubMed  Google Scholar 

  35. Dudka AA, Sweet SM, Heath JK (2010) Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res 70:3391–3401. doi:10.1158/0008-5472.CAN-09-3033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel) 6:926–957. doi:10.3390/cancers6020926

    Article  Google Scholar 

  37. Haftchenary S, Luchman HA, Jouk AO, Veloso AJ, Page BD, Cheng XR, Dawson SS, Grinshtein N, Shahani VM, Kerman K, Kaplan DR, Griffin C, Aman AM, Al-Awar R, Weiss S, Gunning PT (2013) Potent targeting of the STAT3 protein in brain cancer stem cells: a promising route for treating glioblastoma. ACS Med Chem Lett 4:1102–1107. doi:10.1021/ml4003138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ginsberg M, Czeko E, Muller P, Ren Z, Chen X, Darnell JE Jr (2007) Amino acid residues required for physical and cooperative transcriptional interaction of STAT3 and AP-1 proteins c-Jun and c-Fos. Mol Cell Biol 27:6300–6308. doi:10.1128/MCB.00613-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19. doi:10.1016/j.cytogfr.2009.11.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Magne S, Caron S, Charon M, Rouyez MC, Dusanter-Fourt I (2003) STAT5 and Oct-1 form a stable complex that modulates cyclin D1 expression. Mol Cell Biol 23:8934–8945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bourgeais J, Gouilleux-Gruart V, Gouilleux F (2013) Oxidative metabolism in cancer: a STAT affair? JAKSTAT 2:e25764. doi:10.4161/jkst.25764

    PubMed Central  PubMed  Google Scholar 

  42. Turei D, Papp D, Fazekas D, Foldvari-Nagy L, Modos D, Lenti K, Csermely P, Korcsmaros T (2013) NRF2-ome: an integrated web resource to discover protein interaction and regulatory networks of NRF2. Oxid Med Cell Longev 2013:737591. doi:10.1155/2013/737591

    Article  PubMed Central  PubMed  Google Scholar 

  43. Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–978. doi:10.1038/nature05836

    CAS  PubMed  Google Scholar 

  44. Fukui H, Sekikawa A, Tanaka H, Fujimori Y, Katake Y, Fujii S, Ichikawa K, Tomita S, Imura J, Chiba T, Fujimori T (2011) DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflamm Bowel Dis 17:1177–1188. doi:10.1002/ibd.21473

    Article  PubMed  Google Scholar 

  45. Linher-Melville K, Singh G (2014) The transcriptional responsiveness of LKB1 to STAT-mediated signaling is differentially modulated by prolactin in human breast cancer cells. BMC Cancer 14:415. doi:10.1186/1471-2407-14-415

    Article  PubMed Central  PubMed  Google Scholar 

  46. Domercq M, Sanchez-Gomez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556

    Article  CAS  PubMed  Google Scholar 

  47. Horvath CM, Wen Z, Darnell JE Jr (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994

    Article  CAS  PubMed  Google Scholar 

  48. Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL (1995) Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 2:689–697

    Article  CAS  PubMed  Google Scholar 

  49. Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci USA 92:3041–3045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. doi:10.1038/nrd2803

    Article  CAS  PubMed  Google Scholar 

  51. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. doi:10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  52. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi:10.1089/ars.2007.1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schneider BL, Kulesz-Martin M (2004) Destructive cycles: the role of genomic instability and adaptation in carcinogenesis. Carcinogenesis 25:2033–2044. doi:10.1093/carcin/bgh204

    Article  CAS  PubMed  Google Scholar 

  54. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, Becker K, Yates JR III, Felding-Habermann B (2007) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486. doi:10.1158/0008-5472.CAN-06-3137

    Article  CAS  PubMed  Google Scholar 

  55. Sullivan R, Graham CH (2008) Chemosensitization of cancer by nitric oxide. Curr Pharm Des 14:1113–1123

    Article  CAS  PubMed  Google Scholar 

  56. Sattler M, Winkler T, Verma S, Byrne CH, Shrikhande G, Salgia R, Griffin JD (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93:2928–2935

    CAS  PubMed  Google Scholar 

  57. Iiyama M, Kakihana K, Kurosu T, Miura O (2006) Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. Cell Signal 18:174–182. doi:10.1016/j.cellsig.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  58. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  59. Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 275:C1640–C1652

    CAS  PubMed  Google Scholar 

  60. Kaur N, Lu B, Monroe RK, Ward SM, Halvorsen SW (2005) Inducers of oxidative stress block ciliary neurotrophic factor activation of Jak/STAT signaling in neurons. J Neurochem 92:1521–1530. doi:10.1111/j.1471-4159.2004.02990.x

    Article  CAS  PubMed  Google Scholar 

  61. Di Bona D, Cippitelli M, Fionda C, Camma C, Licata A, Santoni A, Craxi A (2006) Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway. J Hepatol 45:271–279. doi:10.1016/j.jhep.2006.01.037

    Article  PubMed  Google Scholar 

  62. Aharoni-Simon M, Reifen R, Tirosh O (2006) ROS-production-mediated activation of AP-1 but not NFkappaB inhibits glutamate-induced HT4 neuronal cell death. Antioxid Redox Signal 8:1339–1349. doi:10.1089/ars.2006.8.1339

    Article  CAS  PubMed  Google Scholar 

  63. Gutzman JH, Rugowski DE, Nikolai SE, Schuler LA (2007) Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene 26:6341–6348. doi:10.1038/sj.onc.1210454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. doi:10.1038/nrc1209

    Article  CAS  PubMed  Google Scholar 

  65. Arakawa M, Ito Y (2007) N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. Cerebellum 6:308–314. doi:10.1080/14734220601142878

    Article  CAS  PubMed  Google Scholar 

  66. Hradetzky S, Roesner LM, Balaji H, Heratizadeh A, Mittermann I, Valenta R, Werfel T (2014) Cytokine effects induced by the human autoallergen alpha-NAC. J Invest Dermatol 134:1570–1578. doi:10.1038/jid.2014.25

    Article  CAS  PubMed  Google Scholar 

  67. Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KF, Wong GT, Vanhoutte PM, Irwin MG, Xia Z (2013) N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med 63:291–303. doi:10.1016/j.freeradbiomed.2013.05.043

    Article  CAS  PubMed  Google Scholar 

  68. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513. doi:10.1038/sj.onc.1204349

    Article  CAS  PubMed  Google Scholar 

  69. Yamashita H, Iwase H (2002) The role of Stat5 in estrogen receptor-positive breast cancer. Breast Cancer 9:312–318

    Article  PubMed  Google Scholar 

  70. Nowakowski BE, Maurer RA (1994) Multiple Pit-1-binding sites facilitate estrogen responsiveness of the prolactin gene. Mol Endocrinol 8:1742–1749. doi:10.1210/mend.8.12.7708061

    CAS  PubMed  Google Scholar 

  71. Balza E, Castellani P, Delfino L, Truini M, Rubartelli A (2013) The pharmacologic inhibition of the xc- antioxidant system improves the antitumor efficacy of COX inhibitors in the in vivo model of 3-MCA tumorigenesis. Carcinogenesis 34:620–626. doi:10.1093/carcin/bgs360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer Fazzari for helping to trouble-shoot aspects related to cloning the human xCT promoter construct and critical feedback on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

KLM is supported by a Canadian Breast Cancer Foundation (CBCF) fellowship, and the research of GS is funded by grants from the CBCF and Canadian Institutes of Health Research (CIHR). The research of PG, a Canada Research Chair, is funded by CBCF, CIHR, and Canadian Foundation for Innovation grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linher-Melville, K., Haftchenary, S., Gunning, P. et al. Signal transducer and activator of transcription 3 and 5 regulate system Xc- and redox balance in human breast cancer cells. Mol Cell Biochem 405, 205–221 (2015). https://doi.org/10.1007/s11010-015-2412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2412-4

Keywords

Navigation