Skip to main content
Log in

Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Proteasome and microRNAs play a critical role in almost all processes in a living organism, including pathology of the heart; however, their interaction is still in question. In the present study, we have found that proteasome inhibitor provoked increase of mature but not immature microRNA-1 in cultured cardiomyocytes, and tested the hypothesis that mature microRNA-1 can be a substrate for endonuclease activity of proteasome. In our in vitro experiments, we have found that proteasome fraction II is able to degrade both mature and primary but not precursor microRNA-1. However, this in vitro effect was not abolished by chemical inhibitor of proteolytic activities of proteasome. These data let us summarize that proteasome has the complex effect on the level of microRNA-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dosenko VE, Gurianova VL, Surova OV, Stroy DA, Moibenko AA (2012) Mature and immature microRNA ratios in cultured rat cardiomyocytes during anoxia-reoxygenation. Exp Clin Cardiol 17(2):84–87

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Dosenko VE, Nagibin VS, Tumanovskaya LV, Zagoriy VY, Moibenko AA, Vaage J (2006) Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology 13(2):119–125

    Article  CAS  PubMed  Google Scholar 

  3. Surova OV, Nagibin VS, Tumanovskaya LV, Dosenko VE, Moibenko AA (2009) Effect of a low dose of proteasome inhibitor on cell death and gene expression in neonatal rat cardiomyocyte cultures exposed to anoxia-reoxygenation. Exp Clin Cardiol 14(2):e57–e61

    PubMed Central  PubMed  Google Scholar 

  4. Baumgarten A, Bang C, Tschirner A, Engelmann A, Adams V, von Haehling S, Doehner W, Pregla R, Anker MS, Blecharz K, Meyer R, Hetzer R, Anker SD, Thum T, Springer J (2013) TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int J Cardiol 168(2):1447–1452

    Article  PubMed  Google Scholar 

  5. Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M, Muckenthaler MU, Eder M, Stapel B, Thum T, Haghikia A, Petrasch-Parwez E, Drexler H, Hilfiker-Kleiner D, Scherr M (2011) Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J 32(10):1287–1297

    Article  CAS  PubMed  Google Scholar 

  6. Kim D, Song J, Jin E-J (2010) MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem 285(35):26900–26907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Xu J, Li R, Workeneh B, Dong Y, Wang X, Hu Z (2012) Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int 82(4):401–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yang F, Zhang L, Wang F, Wang Y, X-s Huo, Y-x Yin, Y-q Wang, Zhang L, S-h Sun (2011) Modulation of the unfolded protein response is the core of microRNA-122-involved sensitivity to chemotherapy in hepatocellular carcinoma. Neoplasia 13(7):590–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Amodio N, Bellizzi D, Leotta M, Raimondi L, Biamonte L, D’Aquila P, Di Martino MT, Calimeri T, Rossi M, Lionetti M, Leone E, Passarino G, Neri A, Giordano A, Tagliaferri P, Tassone P (2013) miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle 12(23):3650–3662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Amodio N, Di Martino MT, Foresta U, Leone E, Lionetti M, Leotta M, Gullà AM, Pitari MR, Conforti F, Rossi M, Agosti V, Fulciniti M, Misso G, Morabito F, Ferrarini M, Neri A, Caraglia M, Munshi NC, Anderson KC, Tagliaferri P, Tassone P (2012) miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis 3:e436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, Lauenborg BT, Odum N, Gniadecki R (2012) miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 7(1):e29541

    Article  PubMed Central  PubMed  Google Scholar 

  12. Teshima K, Nara M, Watanabe A, Ito M, Ikeda S, Hatano Y, Oshima K, Seto M, Sawada K, Tagawa H (2014) Dysregulation of BMI1 and microRNA-16 collaborate to enhance an anti-apoptotic potential in the side population of refractory mantle cell lymphoma. Oncogene 33(17):2191–2203

    Article  CAS  PubMed  Google Scholar 

  13. Singh S, Singh PK, Bhadauriya P, Ganesh S (2012) Lafora disease E3 ubiquitin ligase malin is recruited to the processing bodies and regulates the microRNA-mediated gene silencing process via the decapping enzyme Dcp1a. RNA Biol 9(12):1440–1449

    Article  CAS  PubMed  Google Scholar 

  14. Tian Z, Zhao J-J, Tai Y-T, Amin SB, Hu Y, Berger AJ, Richardson P, Chauhan D, Anderson KC (2012) Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood 120(19):3958–3967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Peng X, Shao J, Shen Y, Zhou Y, Cao Q, Hu J, He W, Yu X, Liu X, Marian AJ, Hong K (2013) FAT10 protects cardiac myocytes against apoptosis. J Mol Cell Cardiol 59:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Smibert P, Yang J-S, Azzam G, Liu J-L, Lai EC (2013) Homeostatic control of Argonaute stability by microRNA availability. Nat Struct Mol Biol 20(7):789–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tang X, Wen S, Zheng D, Tucker L, Cao L, Pantazatos D, Moss SF, Ramratnam B (2013) Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS One 8(8):e72503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ho JJD, Metcalf JL, Yan MS, Turgeon PJ, Wang JJ, Chalsev M, Petruzziello-Pellegrini TN, Tsui AKY, He JZ, Dhamko H, Man HSJ, Robb GB, Teh BT, Ohh M, Marsden PA (2012) Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 287(34):29003–29020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Johnston M, Geoffroy M-C, Sobala A, Hay R, Hutvagner G (2010) HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 21(9):1462–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Martinez NJ, Gregory RI (2013) Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19(5):605–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tsimokha AS, Kulichkova VA, Karpova EV, Zaykova JJ, Aksenov ND, Vasilishina AA, Kropotov AV, Antonov A, Barlev NA (2014) DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 5(11):3555–3567

    PubMed Central  PubMed  Google Scholar 

  22. Ballut L, Petit F, Mouzeyar S, Le Gall O, Candresse T, Schmid P, Nicolas P, Badaoui S (2003) Biochemical identification of proteasome-associated endonuclease activity in sunflower. Biochim Biophys Acta 1645(1):30–39

    Article  CAS  PubMed  Google Scholar 

  23. Jarrousse AS, Petit F, Kreutzer-Schmid C, Gaedigk R, Schmid HP (1999) Possible involvement of proteasomes (prosomes) in AUUUA-mediated mRNA decay. J Biol Chem 274(9):5925–5930

    Article  CAS  PubMed  Google Scholar 

  24. Kulichkova VA, Tsimokha AS, Fedorova OA, Moiseeva TN, Bottril A, Lezina L, Gauze LN, Konstantinova IM, Mittenberg AG, Barlev NA (2010) 26S proteasome exhibits endoribonuclease activity controlled by extra-cellular stimuli. Cell Cycle 9(4):840–849

    Article  CAS  PubMed  Google Scholar 

  25. Petit F, Jarrousse AS, Boissonnet G, Dadet MH, Buri J, Briand Y, Schmid HP (1997) Proteasome (prosome) associated endonuclease activity. Mol Biol Rep 24(1–2):113–117

    Article  CAS  PubMed  Google Scholar 

  26. Petit F, Jarrousse AS, Dahlmann B, Sobek A, Hendil KB, Buri J, Briand Y, Schmid HP (1997) Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 326(Pt 1):93–98

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Schmid HP, Pouch MN, Petit F, Dadet MH, Badaoui S, Boissonnet G, Buri J, Norris V, Briand Y (1995) Relationships between proteasomes and RNA. Mol Biol Rep 21(1):43–47

    Article  CAS  PubMed  Google Scholar 

  28. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  29. Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R, Lodish HF, Blelloch R (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105(6):585–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2):303–317

    Article  CAS  PubMed  Google Scholar 

  31. Karakikes I, Chaanine AH, Kang S, Mukete BN, Jeong D, Zhang S, Hajjar RJ, Lebeche D (2013) Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2(2):e000078

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, Geers-Knörr C, Kraft T, Hajjar RJ, Macleod KT, Harding SE, Thum T (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33(9):1067–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ramos PC, Marques AJ, London MK, Dohmen RJ (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279(14):14323–14330

    Article  CAS  PubMed  Google Scholar 

  34. Gautier-Bert K, Murol B, Jarrousse A-S, Ballut L, Badaoui S, Petit F, Schmid H-P (2003) Substrate affinity and substrate specificity of proteasomes with RNase activity. Mol Biol Rep 30(1):1–7

    Article  CAS  PubMed  Google Scholar 

  35. Jarrousse AS, Gautier K, Apcher S, Badaoui S, Boissonnet G, Dadet MH, Henry L, Bureau JP, Schmid HP, Petit F (1999) Relationships between proteasomes and viral gene products. Mol Biol Rep 26(1–2):113–117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was elaborated within the Grant of the European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kruzliak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurianova, V., Stroy, D., Kruzliak, P. et al. Does proteasome regulate the level of microRNA-1 in cardiomyocytes? Application to anoxia-reoxygenation. Mol Cell Biochem 404, 45–51 (2015). https://doi.org/10.1007/s11010-015-2365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2365-7

Keywords

Navigation