Skip to main content
Log in

Bryostatin-1 causes radiosensitization of BMG-1 malignant glioma cells through differential activation of protein kinase-Cδ not evident in the non-malignant AA8 fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bryostatin-1 (bryo-1), a non-phorbol ester, is known to sensitize mammalian cells against certain chemotherapeutic drugs. We assessed its ability to modify radiation response of mammalian cells using Chinese hamster fibroblasts AA8 cells and human malignant glioma BMG-1 cells. In the malignant glioma BMG-1 cell line, bryo-1 pre-treatment significantly enhanced radiation-induced growth inhibition and cytogenetic damage, and further reduced the clonogenic cell survival as compared to cells irradiated at the clinically relevant dose of 2 Gy. PKCδ expression increased significantly when bryo-1 pre-treated BMG-1 glioma cells were irradiated at 2 Gy and induced prolonged ERK-1/2 activation associated with p21 overexpression. Silencing PKCδ resulted in inhibition of bryo-1-induced radiosensitization. In contrast, bryo-1 failed to alter radiosensitivity (cell survival; growth inhibition; cytogenetic damage) or activate ERK1/2 pathway in the AA8 fibroblasts despite PKCδ phosphorylation at its regulatory (Y155) domain, indicating alternate mechanisms in these non-malignant cells as compared to the glioma cells. This study suggests that bryo-1 may effectively enhance the radiosensitivity of malignant cells and warrants further in-depth investigations to evaluate its radiosensitizing potential in various cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berkow RL, Kraft AS (1985) Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochem Biophys Res Commun 131:1109–1116. doi:10.1016/0006-291X(85)90205-0

    Article  CAS  PubMed  Google Scholar 

  2. Sivak A, Ray F, Van Duuren BL (1969) Phorbol ester tumor-promoting agents and membrane stability. Cancer Res 29:624–630

    CAS  PubMed  Google Scholar 

  3. Philip PA, Zonder JA (1999) Pharmacology and clinical experience with bryostatin 1: a novel anticancer drug. Expert Opin Investig Drugs 8:2189–2199. doi:10.1517/13543784.8.12.2189

    Article  PubMed  Google Scholar 

  4. Isakov N, Galron D, Mustelin T, Pettit GR, Altman A (1993) Inhibition of phorbol ester-induced T cell proliferation by bryostatin is associated with rapid degradation of protein kinase C. J Immunol 150:1195–1204

    CAS  PubMed  Google Scholar 

  5. Jarvis WD, Povirk LF, Turner AJ, Traylor RS, Gewirtz DA, Pettit GR, Grant S (1994) Effects of bryostatin 1 and other pharmacological activators of protein kinase C on 1-[beta-D-arabinofuranosyl]cytosine-induced apoptosis in HL-60 human promyelocytic leukemia cells. Biochem Pharmacol 47:839–852

    Article  CAS  PubMed  Google Scholar 

  6. Feuerstein N, Cooper HL (1983) Rapid protein phosphorylation induced by phorbol ester in HL-60 cells. Unique alkali-stable phosphorylation of a 17,000-dalton protein detected by two-dimensional gel electrophoresis. J Biol Chem 258:10786–10793

    CAS  PubMed  Google Scholar 

  7. Kreutter D, Caldwell AB, Morin MJ (1985) Dissociation of protein kinase C activation from phorbol ester-induced maturation of HL-60 leukemia cells. J Biol Chem 260:5979–5984

    CAS  PubMed  Google Scholar 

  8. Wall NR, Mohammad RM, Al-Katib AM (2001) Mitogen-activated protein kinase is required for bryostatin 1-induced differentiation of the human acute lymphoblastic leukemia cell line Reh. Cell Growth Differ 12:641–647

    CAS  PubMed  Google Scholar 

  9. Wang Z, Su ZZ, Fisher PB, Wang S, VanTuyle G, Grant S (1998) Evidence of a functional role for the cyclin-dependent kinase inhibitor p21(WAF1/CIP1/MDA6) in the reciprocal regulation of PKC activator-induced apoptosis and differentiation in human myelomonocytic leukemia cells. Exp Cell Res 244:105–116

    Article  CAS  PubMed  Google Scholar 

  10. Basu A, Akkaraju GR (1999) Regulation of Caspase Activation and cis-Diamminedichloroplatinum(II)-Induced Cell Death by Protein Kinase C†. Biochemistry 38:4245–4251. doi:10.1021/bi982854q

    Article  CAS  PubMed  Google Scholar 

  11. Chen TC, Su S, Fry D, Liebes L (2003) Combination therapy with irinotecan and protein kinase C inhibitors in malignant glioma. Cancer 97:2363–2373. doi:10.1002/cncr.11307

    Article  CAS  PubMed  Google Scholar 

  12. McGown AT, Jayson G, Pettit GR, Haran MS, Ward TH, Crowther D (1998) Bryostatin 1-tamoxifen combinations show synergistic effects on the inhibition of growth of P388 cells in vitro. Br J Cancer 77:216–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wang S, Guo CY, Castillo A, Dent P, Grant S (1998) Effect of bryostatin 1 on taxol-induced apoptosis and cytotoxicity in human leukemia cells (U937). Biochem Pharmacol 56:635–644

    Article  CAS  PubMed  Google Scholar 

  14. Basu A, Lazo JS (1992) Sensitization of human cervical carcinoma cells to cis- diamminedichloroplatinum(II) by bryostatin 1. Cancer Res 52:3119–3124

    CAS  PubMed  Google Scholar 

  15. Grant S (1997) Modulation of ara-C induced apoptosis in leukemia by the PKC activator bryostatin 1. Front Biosci 2:d242–d252

    CAS  PubMed  Google Scholar 

  16. Gschwend JE, Fair WR, Powell CT (2000) Bryostatin 1 induces prolonged activation of extracellular regulated protein kinases in and apoptosis of LNCaP human prostate cancer cells overexpressing protein kinase calpha. Mol Pharmacol 57:1224–1234

    CAS  PubMed  Google Scholar 

  17. Cartee L, Davis C, Lin PS, Grant S (2000) Chronic exposure to bryostatin-1 increases the radiosensitivity of U937 leukaemia cells ectopically expressing Bcl-2 through a non-apoptotic mechanism. Int J Radiat Biol 76:1323–1333

    Article  CAS  PubMed  Google Scholar 

  18. Watson NC, Jarvis WD, Orr MS, Grant S, Gewirtz DA (1996) Radiosensitization of HL-60 human leukaemia cells by bryostatin-1 in the absence of increased DNA fragmentation or apoptotic cell death. Int J Radiat Biol 69:183–192

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Mohammad RM, Werdell J, Shekhar PV (1998) p53 and protein kinase C independent induction of growth arrest and apoptosis by bryostatin 1 in a highly metastatic mammary epithelial cell line: in vitro versus in vivo activity. Int J Mol Med 1:915–923

    CAS  PubMed  Google Scholar 

  20. Szallasi Z, Du L, Levine R, Lewin NE, Nguyen PN, Williams MD, Pettit GR, Blumberg PM (1996) The bryostatins inhibit growth of B16/F10 melanoma cells in vitro through a protein kinase C-independent mechanism: dissociation of activities using 26-epi-bryostatin 1. Cancer Res 56:2105–2111

    CAS  PubMed  Google Scholar 

  21. Zhao D, Amria S, Hossain A, Sundaram K, Komlosi P, Nagarkatti M, Haque A (2011) Enhancement of HLA class II-restricted CD4 + T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell Immunol 271:392–400. doi:10.1016/j.cellimm.2011.08.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Cartee L, Maggio SC, Smith R, Sankala HM, Dent P, Grant S (2003) Protein kinase C-dependent activation of the tumor necrosis factor receptor-mediated extrinsic cell death pathway underlies enhanced apoptosis in human myeloid leukemia cells exposed to bryostatin 1 and flavopiridol. Mol Cancer Ther 2:83–93

    Article  CAS  PubMed  Google Scholar 

  23. Hornung RL, Pearson JW, Beckwith M, Longo DL (1992) Preclinical evaluation of bryostatin as an anticancer agent against several murine tumor cell lines: in vitro versus in vivo activity. Cancer Res 52:101–107

    CAS  PubMed  Google Scholar 

  24. Philip PA, Rea D, Thavasu P, Carmichael J, Stuart NS, Rockett H, Talbot DC, Ganesan T, Pettit GR, Balkwill F et al (1993) Phase I study of bryostatin 1: assessment of interleukin 6 and tumor necrosis factor alpha induction in vivo. The Cancer Research Campaign Phase I Committee. J Natl Cancer Inst 85:1812–1818

    Article  CAS  PubMed  Google Scholar 

  25. Prendiville J, Crowther D, Thatcher N, Woll PJ, Fox BW, McGown A, Testa N, Stern P, McDermott R, Potter M et al (1993) A phase I study of intravenous bryostatin 1 in patients with advanced cancer. Br J Cancer 68:418–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jayson GC, Crowther D, Prendiville J, McGown AT, Scheid C, Stern P, Young R, Brenchley P, Chang J, Owens S et al (1995) A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24 hour intravenous infusion. Br J Cancer 72:461–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Smith BD, Jones RJ, Cho E, Kowalski J, Karp JE, Gore SD, Vala M, Meade B, Baker SD, Zhao M, Piantadosi S, Zhang Z, Blumenthal G, Warlick ED, Brodsky RA, Murgo A, Rudek MA, Matsui WH (2011) Differentiation therapy in poor risk myeloid malignancies: results of a dose finding study of the combination bryostatin-1 and GM-CSF. Leuk Res 35:87–94. doi:10.1016/j.leukres.2010.06.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pavlick AC, Wu J, Roberts J, Rosenthal MA, Hamilton A, Wadler S, Farrell K, Carr M, Fry D, Murgo AJ, Oratz R, Hochster H, Liebes L, Muggia F (2009) Phase I study of bryostatin 1, a protein kinase C modulator, preceding cisplatin in patients with refractory non-hematologic tumors. Cancer Chemother Pharmacol 64:803–810. doi:10.1007/s00280-009-0931-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ku GY, Ilson DH, Schwartz LH, Capanu M, O’Reilly E, Shah MA, Kelsen DP, Schwartz GK (2008) Phase II trial of sequential paclitaxel and 1 h infusion of bryostatin-1 in patients with advanced esophageal cancer. Cancer Chemother Pharmacol 62:875–880. doi:10.1007/s00280-008-0677-y

    Article  CAS  PubMed  Google Scholar 

  30. Dwarkanath BS, Zolzer F, Chandana S, Bauch T, Adhikari JS, Muller WU, Streffer C, Jain V (2001) Heterogeneity in 2-deoxy-d-glucose-induced modifications in energetics and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys 50:1051–1061. doi:10.1016/S0360-3016(01)01534-6

    Article  CAS  PubMed  Google Scholar 

  31. Suman S, Khaitan D, Pati U, Seth RK, Chandna S (2009) Stress response of a p53 homologue in the radioresistant Sf9 insect cells. Int J Radiat Biol 85:238–249

    Article  CAS  PubMed  Google Scholar 

  32. Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe T, Ono Y, Taniyama Y, Hazama K, Igarashi K, Ogita K, Kikkawa U, Nishizuka Y (1992) Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C-delta subspecies. Proc Natl Acad Sci USA 89:10159–10163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF (1993) Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 268:20110–20115

    CAS  PubMed  Google Scholar 

  35. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK, Parmar S, Giafis N, Kalvakolanu DV, Rahman A, Uddin S, Minucci S, Tallman MS, Fish EN, Platanias LC (2003) Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 278:32544–32551. doi:10.1074/jbc.M301523200

    Article  CAS  PubMed  Google Scholar 

  36. Datta K, Nambudripad R, Pal S, Zhou M, Cohen HT, Mukhopadhyay D (2000) Inhibition of insulin-like growth factor-I-mediated cell signaling by the von Hippel-Lindau gene product in renal cancer. J Biol Chem 275:20700–20706. doi:10.1074/jbc.M909970199

    Article  CAS  PubMed  Google Scholar 

  37. Miyamoto A, Nakayama K, Imaki H, Hirose S, Jiang Y, Abe M, Tsukiyama T, Nagahama H, Ohno S, Hatakeyama S, Nakayama KI (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416:865–869

    Article  CAS  PubMed  Google Scholar 

  38. Sung SJ, Lin PS, Schmidt-Ullrich R, Hall CE, Walters JA, McCrady C, Grant S (1994) Effects of the protein kinase C stimulant bryostatin 1 on the proliferation and colony formation of irradiated human T-lymphocytes. Int J Radiat Biol 66:775–783

    CAS  PubMed  Google Scholar 

  39. Liu B, Ryer EJ, Kundi R, Kamiya K, Itoh H, Faries PL, Sakakibara K, Kent KC (2007) Protein kinase C-delta regulates migration and proliferation of vascular smooth muscle cells through the extracellular signal-regulated kinase 1/2. J Vasc Surg 45:160–168

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S (1996) Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 271:23512–23519

    Article  CAS  PubMed  Google Scholar 

  41. Oh YT, Chun KH, Park BD, Choi JS, Lee SK (2007) Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cdelta-mediated phosphorylation. Apoptosis 12:1339–1347. doi:10.1007/s10495-007-0066-8

    Article  CAS  PubMed  Google Scholar 

  42. Ando T, Kawabe T, Ohara H, Ducommun B, Itoh M, Okamoto T (2001) Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem 276:42971–42977. doi:10.1074/jbc.M106460200

    Article  CAS  PubMed  Google Scholar 

  43. Yan Y, Black CP, Cowan KH (2007) Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 26:4689–4698

    Article  CAS  PubMed  Google Scholar 

  44. Yuan ZM, Utsugisawa T, Ishiko T, Nakada S, Huang Y, Kharbanda S, Weichselbaum R, Kufe D (1998) Activation of protein kinase C delta by the c-Abl tyrosine kinase in response to ionizing radiation. Oncogene 16:1643–1648. doi:10.1038/sj.onc.1201698

    Article  CAS  PubMed  Google Scholar 

  45. Lu W, Finnis S, Xiang C, Lee HK, Markowitz Y, Okhrimenko H, Brodie C (2007) Tyrosine 311 is phosphorylated by c-Abl and promotes the apoptotic effect of PKCdelta in glioma cells. Biochem Biophys Res Commun 352:431–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Clark AS, West KA, Blumberg PM, Dennis PA (2003) Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Res 63:780–786

    CAS  PubMed  Google Scholar 

  47. Szallasi Z, Denning MF, Chang EY, Rivera J, Yuspa SH, Lehel C, Olah Z, Anderson WB, Blumberg PM (1995) Development of a rapid approach to identification of tyrosine phosphorylation sites: application to PKC delta phosphorylated upon activation of the high affinity receptor for IgE in rat basophilic leukemia cells. Biochem Biophys Res Commun 214:888–894

    Article  CAS  PubMed  Google Scholar 

  48. Acs P, Beheshti M, Szallasi Z, Li L, Yuspa SH, Blumberg PM (2000) Effect of a tyrosine 155 to phenylalanine mutation of protein kinase cdelta on the proliferative and tumorigenic properties of NIH 3T3 fibroblasts. Carcinogenesis 21:887–891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted as part of the low-dose radiobiology investigations under DRDO Grant INM-311.1.5. RSD and SH are thankful to the Indian Government agencies ICMR and DRDO, respectively, for receiving research scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Chandna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2014_2291_MOESM1_ESM.tif

Fig.S1 Radiosensitivity of BMG-1 and AA8 cells is unaffected by Bryo-1 pre-treatment at low-dose radiation. Cell proliferation kinetics of (A) BMG-1 glioma cells and (B) AA8 fibroblasts shows no effect of bryo-1 pre-treatment following irradiation at doses 0.1 Gy, 0.4 Gy, and 1.0 Gy. Results are mean  ± SD of three independent experiments. (TIFF 492 kb)

11010_2014_2291_MOESM2_ESM.tif

Fig.S2 Bryo-1 treatment prior to irradiation results in sustained activation (phosphorylation) of ERK1/2 in BMG-1 cells. Western blot shows sustained increase in the phosphorylated form of ERK1/2 in bryo-1 pre-treated BMG-1 cells at 24 h post-irradiation. (TIFF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagur, R.S., Hambarde, S. & Chandna, S. Bryostatin-1 causes radiosensitization of BMG-1 malignant glioma cells through differential activation of protein kinase-Cδ not evident in the non-malignant AA8 fibroblasts. Mol Cell Biochem 401, 49–59 (2015). https://doi.org/10.1007/s11010-014-2291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2291-0

Keywords

Navigation