Skip to main content
Log in

Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205. doi:10.1016/S0006-291X(82)80124-1

    Article  CAS  PubMed  Google Scholar 

  2. Jackson MJ (2008) Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radic Biol Med 44:132–141

    Article  CAS  PubMed  Google Scholar 

  3. Gomez-Cabrera MC, Domenech E, Vina J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131

    Article  CAS  PubMed  Google Scholar 

  4. Fischer CP, Hiscock NJ, Basu S, Vessby B, Kallner A, Sjoberg LB, Febbraio MA, Pedersen BK (2006) Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 100:1679–1687. doi:10.1152/japplphysiol.00421.2005

    Article  CAS  PubMed  Google Scholar 

  5. Richter EA, Ploug T, Galbo H (1985) Increased muscle glucose uptake after exercise. No need for insulin during exercise. Diabetes 34:1041–1048

    Article  CAS  PubMed  Google Scholar 

  6. Reid MB, Khawli FA, Moody MR (1993) Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol 75:1081–1087

    CAS  PubMed  Google Scholar 

  7. Hanover JA, Krause MW, Love DC (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim et Biophys Acta 1800:80–95

    Article  CAS  Google Scholar 

  8. Oki T, Yamazaki K, Kuromitsu J, Okada M, Tanaka I (1999) cDNA Cloning and Mapping of a Novel Subtype of Glutamine:fructose-6-phosphate Amidotransferase (GFAT2) in Human and Mouse. Genomics 57:227–234

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Riesland L, Paterson AJ, Kudlow JE (2004) Phosphorylation of Mouse Glutamine-Fructose-6-phosphate Amidotransferase 2 (GFAT2) by cAMP-dependent Protein Kinase Increases the Enzyme Activity. J Biol Chem 279:29988–29993. doi:10.1074/jbc.M401547200

    Article  CAS  PubMed  Google Scholar 

  10. Whisenhunt TR, Yang X, Bowe DB, Paterson AJ, Van Tine BA, Kudlow JE (2006) Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology 16:551–563. doi:10.1093/glycob/cwj096

    Article  CAS  PubMed  Google Scholar 

  11. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142. 10.1074/jbc.M403773200M403773200

    Article  CAS  PubMed  Google Scholar 

  12. Housley MP, Udeshi ND, Rodgers JT, Shabanowitz J, Puigserver P, Hunt DF, Hart GW (2009) A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 284:5148–5157. doi:10.1074/jbc.M808890200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Guinez C, Losfeld ME, Cacan R, Michalski JC, Lefebvre T (2006) Modulation of HSP70 GlcNAc-directed lectin activity by glucose availability and utilization. Glycobiology 16:22–28. doi:10.1093/glycob/cwj041

    Article  CAS  PubMed  Google Scholar 

  14. Yang WH, Park SY, Ji S, Kang JG, Kim J-E, Song H, Mook-Jung I, Choe K-M, Cho JW (2010) O-GlcNAcylation regulates hyperglycemia-induced GPX1 activation. Biochem Biophys Res Commun 391:756–761. doi:10.1016/j.bbrc.2009.11.133

    Article  CAS  PubMed  Google Scholar 

  15. Dinic S, Arambasic J, Mihailovic M, Uskokovic A, Grdovic N, Markovic J, Karadzic B, Poznanovic G, Vidakovic M (2013) Decreased O-GlcNAcylation of the key proteins in kinase and redox signalling pathways is a novel mechanism of the beneficial effect of alpha-lipoic acid in diabetic liver. Br J Nutr 110:401–412. doi:10.1017/S0007114512005429

    Article  CAS  PubMed  Google Scholar 

  16. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–725

    Article  CAS  PubMed  Google Scholar 

  17. Xing D, Feng W, Chen Y-F, Chatham JC, Oparil S (2008) Glucosamine Inhibits TNF-{alpha}-Induced Expression of Inflammatory Mediators In Rat Aortic Smooth Muscle Cells through Inhibition of NF{kappa}B Activation. FASEB J 22:744.4

    Google Scholar 

  18. Zachara N, Molina H, Wong K, Pandey A, Hart G (2010) The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:793–808. doi:10.1007/s00726-010-0695-z

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cieniewski-Bernard C, Bastide B, Lefebvre T, Lemoine J, Mounier Y, Michalski JC (2004) Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol Cell Proteomics 3:577–585. 10.1074/mcp.M400024-MCP200

    Article  CAS  PubMed  Google Scholar 

  20. Arias EB, Kim J, Cartee GD (2004) Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 53:921–930

    Article  CAS  PubMed  Google Scholar 

  21. Hedou J, Cieniewski-Bernard C, Leroy Y, Michalski JC, Mounier Y, Bastide B (2007) O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle. J Biol Chem 282:10360–10369. doi:10.1074/jbc.M606787200

    Article  CAS  PubMed  Google Scholar 

  22. Cieniewski-Bernard C, Mounier Y, Michalski JC, Bastide B (2006) O-GlcNAc level variations are associated with the development of skeletal muscle atrophy. J Appl Physiol 100:1499–1505. doi:10.1152/japplphysiol.00865.2005

    Article  CAS  PubMed  Google Scholar 

  23. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348. doi:10.1172/JCI11235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV (1979) Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 47:1278–1283

    CAS  PubMed  Google Scholar 

  25. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi:10.1113/jphysiol.2004.080564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Taylor AW, Bruno RS, Frei B, Traber MG (2006) Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes. Anal Biochem 350:41–51. doi:10.1016/j.ab.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  27. Dudley RW, Khairallah M, Mohammed S, Lands L, Des Rosiers C, Petrof BJ (2006) Dynamic responses of the glutathione system to acute oxidative stress in dystrophic mouse (mdx) muscles. Am J Physiol Regul Integr Comp Physiol 291:R704–R710. doi:10.1152/ajpregu.00031.2006

    Article  CAS  PubMed  Google Scholar 

  28. Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP (2010) O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci U S A 107:17797–17802. doi:10.1073/pnas.1001907107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol Cell Physiol 257:L163–L173

    CAS  Google Scholar 

  30. Sen CK, Atalay M, Hanninen O (1994) Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Appl Physiol 77:2177–2187

    CAS  PubMed  Google Scholar 

  31. Delp MD, Duan C (1996) Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol 80:261–270

    CAS  PubMed  Google Scholar 

  32. Chaudhary P, Suryakumar G, Sharma YK, Ilavazhagan G (2012) Differential response of the gastrocnemius and soleus muscles of rats to chronic hypobaric hypoxia. Aviat Space Environ Med 83:1037–1043

    Article  PubMed  Google Scholar 

  33. Sen CK, Marin E, Kretzschmar M, Hanninen O (1992) Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73:1265–1272

    CAS  PubMed  Google Scholar 

  34. Guinez C, Mir AM, Leroy Y, Cacan R, Michalski JC, Lefebvre T (2007) Hsp70-GlcNAc-binding activity is released by stress, proteasome inhibition, and protein misfolding. Biochem Biophys Res Commun 361:414–420. doi:10.1016/j.bbrc.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  35. Zou L, Zhu-Mauldin X, Marchase RB, Paterson AJ, Liu J, Yang Q, Chatham JC (2012) Glucose deprivation induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium dependent. J Biol Chem. doi:10.1074/jbc.M112.393207

    Google Scholar 

  36. Taylor RP, Geisler TS, Chambers JH, McClain DA (2009) Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 284:3425–3432. doi:10.1074/jbc.M803198200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cheung WD, Hart GW (2008) AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem 283:13009–13020. doi:10.1074/jbc.M801222200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sohn KC, Lee KY, Park JE, Do SI (2004) OGT functions as a catalytic chaperone under heat stress response: a unique defense role of OGT in hyperthermia. Biochem Biophys Res Commun 322:1045–1051. 10.1016/j.bbrc.2004.08.023

    Article  CAS  PubMed  Google Scholar 

  39. Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274:32015–32022

    Article  CAS  PubMed  Google Scholar 

  40. Butkinaree C, Park K, Hart GW (2010) O-linked β-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim et Biophys Acta 1800:96–106. doi:10.1016/j.bbagen.2009.07.018

    Article  CAS  Google Scholar 

  41. Sun Z, Liu L, Liu N, Liu Y (2008) Muscular response and adaptation to diabetes mellitus. Front Biosci 13:4765–4794 3038 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. Jackson MJ (2005) Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philos Trans R Soc Lond B Biol Sci 360:2285–2291. doi:10.1098/rstb.2005.1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Young ME, Yan J, Razeghi P, Cooksey RC, Guthrie PH, Stepkowski SM, McClain DA, Tian R, Taegtmeyer H (2007) Proposed regulation of gene expression by glucose in rodent heart. Gene Regul Syst Bio 1:251–262

    PubMed Central  PubMed  Google Scholar 

  44. Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M (2007) Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 40:952–957

    Article  CAS  PubMed  Google Scholar 

  45. Nelson BA, Robinson KA, Koning JS, Buse MG (1997) Effects of exercise and feeding on the hexosamine biosynthetic pathway in rat skeletal muscle. Am J Physiol 272:E848–E855

    CAS  PubMed  Google Scholar 

  46. Mounier Y, Tiffreau V, Montel V, Bastide B, Stevens L (2009) Phenotypical transitions and Ca2+ activation properties in human muscle fibers: effects of a 60-day bed rest and countermeasures. J Appl Physiol 106:1086–1099. doi:10.1152/japplphysiol.90695.2008

    Article  CAS  PubMed  Google Scholar 

  47. Toivonen MH, Pollanen E, Ahtiainen M, Suominen H, Taaffe DR, Cheng S, Takala T, Kujala UM, Tammi MI, Sipila S, Kovanen V (2013) OGT and OGA expression in postmenopausal skeletal muscle associates with hormone replacement therapy and muscle cross-sectional area. Exp Gerontol 48:1501–1504. doi:10.1016/j.exger.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  48. Belke DD (2011) Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart. J Appl Physiol 111:157–162. doi:10.1152/japplphysiol.00147.2011

    Article  CAS  PubMed  Google Scholar 

  49. Bennett CE, Johnsen VL, Shearer J, Belke DD (2012) Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci. doi:10.1016/j.lfs.2012.09.007

    PubMed  Google Scholar 

  50. Medford HM, Porter K, Marsh SA (2013) Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol. doi:10.1152/ajpheart.00135.2013

    Google Scholar 

  51. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406. doi:10.1152/physrev.90100.2007

    Article  CAS  PubMed  Google Scholar 

  52. Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gary Wilson for his technical assistance. This work was supported by the School of Human Movement Studies, The University of Queensland (Tina-Tinkara Peternelj, Natalie Strobel, Aya Matsumoto, David Briskey and Jeff Coombes), Institute for Health and Social Science Research, Central Queensland University (Vincent Dalbo and Patrick Tucker), and the College of Pharmacy, Washington State University (Susan Marsh).

Conflict of Interest

There have been no conflicts of interest and sources of funding for all authors involved in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Tinkara Peternelj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peternelj, T.T., Marsh, S.A., Strobel, N.A. et al. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle. Mol Cell Biochem 400, 265–275 (2015). https://doi.org/10.1007/s11010-014-2283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2283-0

Keywords

Navigation