Skip to main content
Log in

Single-prolonged stress activates the transcription factor ATF6α branch of the unfolded protein response in rat neurons of dorsal raphe nucleus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In our previous studies, we have found that endoplasmic reticulum (ER) stress is associated with post-traumatic stress disorder (PTSD), however, the activation of ER stress sensors in PTSD remains unclear. ATF6 alpha (ATF6α) is an ER-membrane-bound transcription factor and functions as a critical sensor and regulator of ER stress in mammalian cells. The goal of this study is to detect whether there is activation of the transcription factor ATF6α branch of the unfolded protein response in the dorsal raphe nucleus neurons of the rats exposed to single-prolonged stress (SPS), which is a model employed extensively in PTSD study. Our results have demonstrated that SPS activated the ER transmembrane protein ATF6α via its cleavage; and induced the up-regulation of the downstream targets of ATF6α, the mRNA of XBP1 and GRP94. To the best of our knowledge, this is the first study to investigate the relationship between the ATF6α pathways and PTSD, and our results show that SPS activates the ATF6α branch of the ER stress response, which may be contributed to the pathogenesis of PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  2. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association, Arlington

    Google Scholar 

  3. Subica AM, Claypoole KH, Wylie AM (2009) PTSD’S mediation of the relationships between trauma, depression, substance abuse, mental health, and physical health in individuals with severe mental illness: evaluating a comprehensive model. Schizophr Res 136:104–109

    Article  Google Scholar 

  4. Dedert EA, Green KT, Calhoun PS et al (2009) Association of trauma exposure with psychiatric morbidity in military veterans who have served since September 11, 2001. J Psychiatr Res 43:830–836

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nakanishi T, Shimazawa M, Sugitani S et al (2013) Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice. J Neurochem 125:111–124

    Article  CAS  PubMed  Google Scholar 

  6. Kunte MM, Choudhury S, Manheim JF et al (2012) ER stress is involved in T17M rhodopsin-induced retinal degeneration. Investig Ophthalmol Vis Sci 53:3792–3800

    Article  CAS  Google Scholar 

  7. Shinde VM, Sizova OS, Lin JH et al (2012) ER stress in retinal degeneration in S334ter Rho rats. PLoS ONE 7:e33266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Stefani IC, Wright D, Polizzi KM et al (2012) The role of ER stress-induced apoptosis in neurodegeneration. Curr Alzheimer Res 9:373–387

    Article  CAS  PubMed  Google Scholar 

  9. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Investig 101:1389–1398

    Article  Google Scholar 

  10. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    Article  PubMed  Google Scholar 

  11. Harding HP, Zhang Y, Bertolotti A et al (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by iRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis directly binds in the presence of NF-Y (CBF) to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  16. Xie JH, Han F, Shi YX (2014) The unfolded protein response is triggered in rat neurons of the dorsal raphe nucleus after single-prolonged stress. Neurochem Res 39:741–747

    Article  CAS  PubMed  Google Scholar 

  17. Xie H, Han F, Shi YX (2012) Single-prolonged stress induce changes of CaM/CaMKIIα in the rats of dorsal raphe nucleus. Neurochem Res 37:1043–1049

    Article  CAS  PubMed  Google Scholar 

  18. Han F, Yan S, Shi YX (2013) Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder. PLoS ONE 8:e69340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu H, Han F, Shi Y (2013) Effect of calreticulin on Ca2+/CaM kinaseIIα and endoplasmic reticulum stress in hippocampal in a rat model of post-traumatic stress disorder. Neurochem Res 38:1407–1414

    Article  CAS  PubMed  Google Scholar 

  20. Liberzon I, Lόpez JF, Flagel SB et al (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11:11–17

    Article  CAS  PubMed  Google Scholar 

  21. Iwamoto Y, Morinobu S, Takahashi T et al (2007) Single prolonged stress increases contextual freezing and the expression of glycine transporter 1 and vesicle-associated membrane protein 2 mRNA in the hippocampus of rats. Prog Neuropsychopharmacol Biol Psychiatry 31:642–651

    Article  CAS  PubMed  Google Scholar 

  22. Lowry CA, Johnson PL, Hay-Schmidt A et al (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8:233–246

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    CAS  PubMed  Google Scholar 

  24. Lowry C, Hale MV, Evans A et al (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  25. Baldwin D, Woods R, Lawson R et al (2011) Efficacy of drug treatments for generalised anxiety disorder: systematic review and meta-analysis. BMJ 342:d1199

    Article  PubMed  Google Scholar 

  26. Koen N, Stein DJ (2011) Pharmacotherapy of anxiety disorders: a critical review. Dialogues Clin Neurosci 13:423–437

    PubMed Central  PubMed  Google Scholar 

  27. Haze K, Yoshida H, Yanagi H et al (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nadanaka S, Yoshida H, Sato R et al (2006) Analysis of ATF6 activation in Site-2 protease-deficient Chinese hamster ovary cells. Cell Struct Funct 31:109–116

    Article  CAS  PubMed  Google Scholar 

  29. Rutkowski DT, Wu J, Back SH et al (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15:829–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Adachi Y, Yamamoto K, Okada T et al (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33:75–89

    Article  CAS  PubMed  Google Scholar 

  31. Liberzon I, Krstov M, Young EA (1997) Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:443–453

    Article  CAS  PubMed  Google Scholar 

  32. Khan S, Liberzon I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology 172:225–229

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi T, Morinobu S, Iwamoto Y et al (2006) Effect of paroxetine on enhanced contextual fear induced by single prolonged stress in rats. Psychopharmacology 189:165–173

    Article  CAS  PubMed  Google Scholar 

  34. Zhao D, Han F, Shi Y (2014) Effect of glucose-regulated protein 94 and endoplasmic reticulum modulator caspase-12 in medial prefrontal cortex in a rat model of posttraumatic stress disorder. J Mol Neurosci 54:147–155

    Article  CAS  PubMed  Google Scholar 

  35. Palkovits M, Brownstein M, Kizer JS et al (1976) Effect of stress on serotonin concentration and tryptophan hydroxylase activity of brain nuclei. Neuroendocrinology 22:298–304

    Article  CAS  PubMed  Google Scholar 

  36. Bremner JD, Elzinga B, Schmahl C et al (2008) Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 167:171–186

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ressler K, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12:2–19

    Article  PubMed  Google Scholar 

  38. Luo FF, Han F, Shi YX (2011) Change in 5-HT1A receptor in the dorsal raphe nucleus in a rat model of post-traumatic stress disorder. Mol Med Rep 4:843–847

    CAS  PubMed  Google Scholar 

  39. Liu D, Xiao B, Han F et al (2012) Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder. BMC Psychiatry 12:211

    Article  PubMed Central  PubMed  Google Scholar 

  40. Yoshida H, Haze K, Yanagi H et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose regulated proteins; involvement of basic-leucine zipper transcription factors. J Biol Chem 273:33741–33749

    Article  CAS  PubMed  Google Scholar 

  41. Hashida K, Kitao Y, Sudo H et al (2012) ATF6 alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS ONE 7:e47950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Michallet AS, Mondiere P, Tail-lardet M et al (2011) Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PLoS ONE 6:e25820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wu J, Rutkowski DT, Dubois M et al (2007) ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364

    Article  CAS  PubMed  Google Scholar 

  44. Oslowski CM, Urano F (2010) A switch from life to death in endoplasmic reticulum stressed β-cells. Diabetes Obes Metab 12(Suppl 2):58–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  46. Lee K, Tirasophon W, Shen X et al (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yamamoto K, Sato T, Matsui T et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev Cell 13:365–376

    Article  CAS  PubMed  Google Scholar 

  48. Arai M, Kondoh N, Imazeki N et al (2006) Transformation-associated gene regulation by ATF6 alpha during hepatocarcinogenesis. FEBS Lett 580:184–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all of the staff members of the China Medical University Experiment Center for their technical support. In addition, this research was supported by a Grant from the National Natural Science Foundation of China (No. 31200772) and China National Doctoral Fund (No. 20132104110021).

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiu Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Han, F. & Shi, Y. Single-prolonged stress activates the transcription factor ATF6α branch of the unfolded protein response in rat neurons of dorsal raphe nucleus. Mol Cell Biochem 399, 209–216 (2015). https://doi.org/10.1007/s11010-014-2247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2247-4

Keywords

Navigation