Skip to main content
Log in

Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inflammasomes are protein complexes formed in response to tissue injury and inflammation to regulate the formation of proinflammatory cytokines. Nod-like receptor pyrin domain containing 3 (NLRP3) is one such inflammasome involved in pancreatic inflammation. Caspase activation recruitment domain (CARD) is an interaction motif found in all the major components of NLRP3 inflammasome such as apoptosis associated speck-like CARD containing protein (ASC) and procaspase-1. NLRP3 activates procaspase-1 with the concerted action of CARD domain of ASC. In the present study, the effect of rutin, a natural flavonoid on the expression of ASC of NLRP3, was investigated in rats treated with ethanol (EtOH) and cerulein (Cer). Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats were fed normal diet, whereas groups 3 and 4 rats were fed EtOH (36 % of total calories) containing diet for a total period of 5 weeks and also administered Cer (20 µg/kg body weight i.p.) thrice weekly for the last 3 weeks. In addition, groups 2 and 4 rats received daily 100 mg/kg body weight of rutin from third week. Rutin co-administration significantly decreased the level of pancreatic marker enzymes, oxidative stress markers, inflammatory markers, mRNA expression of caspase-1, cytokines, ASC–NLRP3, and protein expression of caspase-1 and ASC in rats received EtOH–Cer. The results of the study revealed that rutin can reduce inflammation in pancreas probably by influencing the down regulation of ASC–NLRP3 which might result in the reduced activation of caspase-1 and controlled cytokine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NLRP3:

Nod-like receptor pyrin domain containing 3

CARD:

Caspase activation recruitment domain

ASC:

Apoptosis associated speck-like CARD containing protein

References

  1. Beglinger C (1997) Pathophysiological events in chronic pancreatitis: the current concept. In: Malfertheiner P, Dominguez-Munoz JE, Schulz U, Lippert H (eds) Diagnostic procedures in pancreatic disease. Springer, Berlin, pp 161–164. doi:10.1007/978-3-642-60580-2_19

    Chapter  Google Scholar 

  2. Haber PS, Apte MV, Moran C, Applegate TL, Pirola RC, Korsten MA, McCaughan GW, Wilson JS (2004) Non-oxidative metabolism of ethanol by rat pancreatic acini. Pancreatology 4:82–89. doi:10.1159/000077608

    Article  PubMed  CAS  Google Scholar 

  3. Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, Chevali L (2005) Pathophysiology of acute pancreatitis. Pancreatology 5:132–144. doi:10.1159/000085265

    Article  PubMed  Google Scholar 

  4. Saluja AK, Bhagat L, Lee HS, Bhatia M, Frossard JL, Steer ML (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276:G835–G842

    PubMed  CAS  Google Scholar 

  5. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190:117–125. doi:10.1002/(SICI)1096-9896(200002)

    Article  PubMed  CAS  Google Scholar 

  6. Granger J, Remick D (2005) Acute pancreatitis: models, markers and mediators. Shock 24:45–51. doi:10.1097/01.shk.0000191413.94461.b0

    Article  PubMed  CAS  Google Scholar 

  7. Stehlik C (2007) The PYRIN domain in signal transduction. Curr Protein Pept Sci 8:293–310. doi:10.2174/138920307780831857

    Article  PubMed  CAS  Google Scholar 

  8. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319–325. doi:10.1016/S1074-7613(04)00046-9

    Article  PubMed  CAS  Google Scholar 

  9. Aganna E, Hawkins PN, Ozen S, Pettersson T, Bybee A et al (2004) Allelic variants in genes associated with hereditary periodic fever syndromes as susceptibility factors for reactive systemic AA amyloidosis. Genes Immun 5:289–293. doi:10.1038/sj.gene.6364070

    Article  PubMed  CAS  Google Scholar 

  10. Stienstraa R, Diepend JAV, Tack CJ, Hasan Zaki MH, Veerdonka FLV, Perera D (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. PNAS 1–6. doi:10.1073/pnas.1100255108

  11. Di Carlo G, Mascolo N, Izzo A, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353

    Article  PubMed  Google Scholar 

  12. Jung CH, Cho HC, Kim JC (2007) Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharmacal Res 30:1599–1607. doi:10.1007/BF02977330

    Article  CAS  Google Scholar 

  13. Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2–16

    CAS  Google Scholar 

  14. Metodiewa D (1997) Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid rutin action. Biochem Mol Biol Int 41:1067–1075. doi:10.1080/15216549700202141

    PubMed  CAS  Google Scholar 

  15. Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC (2005) Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. Am J Pathol 166:93–106. doi:10.1016/S0002-9440(10)62235-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Lowry RR, Tinsley IJ (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472. doi:10.1007/BF02636814

    Article  PubMed  CAS  Google Scholar 

  17. Gomori G (1957) Assay of serum amylase with small amounts of serum. Am J Clin Pathol 27:714–716

    PubMed  CAS  Google Scholar 

  18. McGowan GK, Wills MR (1962) The diagnostic value of faecal trypsin estimation in chronic pancreatic disease. J Clin Pathol 15:62–68. doi:10.1136/jcp.15.1.62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi:10.1038/356768a0

    Article  PubMed  CAS  Google Scholar 

  20. Bradley PP, Priebat DA, Christensen RD, Royhstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investig Dermatol 78:206–209. doi:10.1111/1523-1747.ep12506462

    Article  PubMed  CAS  Google Scholar 

  21. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxide. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  22. Miyazawa T (1989) Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 7:209–217. doi:10.1016/0891-5849(89)90017-8

    Article  PubMed  CAS  Google Scholar 

  23. Miller NJ, Rice Evans CA, Davis MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity status in premature neonates. Clin Sci 84:407–412

    PubMed  CAS  Google Scholar 

  24. Moran MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 582:67–78

    Article  Google Scholar 

  25. Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  26. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  27. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  29. Gaisano HY, Gorelick FS (2009) New insights into the mechanisms of pancreatitis. Gastroenterology 136:2040–2044. doi:10.1053/j.gastro.2009.04.023

    Article  PubMed  CAS  Google Scholar 

  30. Binker MG, Binker-Cosen AA, Richards D, Gaisano HY, Cosen RH, Cosen-Binker LI (2010) Chronic stress sensitizes rats to pancreatitis induced by cerulein: role of TNF-α. World J Gastroenterol 16:5565–5581. doi:10.3748/wjg.v16.i44.5565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Yadav D, Agarwal N, Pitchumoni CS (2002) A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol 97:1309–1318. doi:10.1111/j.1572-0241.2002.05766.x

    Article  PubMed  CAS  Google Scholar 

  32. Smotkin J, Tenner S (2002) Laboratory diagnostic tests in acute pancreatitis. J Clin Gastroenterol 34:459–462

    Article  PubMed  Google Scholar 

  33. Smith JS, Ediss I, Mullinger MA, Bogoch A, Vancouver BC (1971) Fecal chymotrypsin and trypsin determinations. CMA J 104:691–697

    CAS  Google Scholar 

  34. Kettle AJ, Winterbourn CC (2001) A kinetic analysis of the catalase activity of myeloperoxidase. Biochemistry 40:10204–10212. doi:10.1021/bi010940b

    Article  PubMed  CAS  Google Scholar 

  35. Chooklin S, Pereyaslov A, Bihalskyy I (2009) Pathogenic role of myeloperoxidase in acute pancreatitis. Hepatobiliary Pancreat Dis Int 8:627–631

    PubMed  CAS  Google Scholar 

  36. Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW (1999) The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl) lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. J Clin Investig 104:103–113. doi:10.1172/JCI3042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20:3–9. doi:10.1016/j.coi.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  38. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361. doi:10.1038/nature08938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi:10.1038/nature04516

    Article  PubMed  CAS  Google Scholar 

  40. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40. doi:10.1038/nri1997

    Article  PubMed  CAS  Google Scholar 

  41. Srinivasula SM, Poyet JL, Razmara M (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122. doi:10.1074/jbc.C200179200

    Article  PubMed  CAS  Google Scholar 

  42. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi:10.1146/annurev.immunol.021908.132612

    Article  PubMed  CAS  Google Scholar 

  43. Gukovsky I, Pandol SJ, Gukovskaya AS (2011) Organelles dysfunction in the pathogenesis of pancreatitis. Antioxid Redox Signal 15:2699–2710. doi:10.1089/ars.2011.4068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, Sandoval D, Gukovsky S, Pandol SJ (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Investig 100:1853–1862. doi:10.1172/JCI119714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Hussain MT, Verma AR, Vijayakumar M, Sharma A, Mathela CS, Rao CV (2009) Rutin, a natural flavonoid, protects against gastric mucosal damage in experimental animals. Asian J Tradit Med 4:188–197

    CAS  Google Scholar 

  46. Tian R, Tan JT, Wang RL, Xie H, Qian YB, Yu KL (2013) The role of intestinal mucosa oxidative stress in gut barrier dysfunction of severe acute pancreatitis. Eur Rev Med Pharmacol Sci 17:349–355

    PubMed  CAS  Google Scholar 

  47. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 2:192–208. doi:10.1007/s00018-003-3206-5

    Article  Google Scholar 

  48. Reddy VD, Padmavathi P, Gopi S, Paramahamsa M, Varadacharyulu NC (2010) Protective effect of Emblica officinalis against alcohol-induced hepatic injury by ameliorating oxidative stress in rats. Indian J Clin Biochem 25:419–424. doi:10.1007/s12291-010-0058-2

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Pazanimuthu Annamalai, Principal Scientist, Department of Biomedical Sciences, Sri Ramachandra University, for his expert technical support in RT-PCR study. This work was supported by Indian Council of Medical Research (ICMR) [Senior Research Fellow, file no.: 45/51/2012/BMS/TRM], New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Geetha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aruna, R., Geetha, A. & Suguna, P. Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis. Mol Cell Biochem 396, 269–280 (2014). https://doi.org/10.1007/s11010-014-2162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2162-8

Keywords

Navigation