Skip to main content

Advertisement

Log in

Protective effect of quercetin in ecto-enzymes, cholinesterases, and myeloperoxidase activities in the lymphocytes of rats exposed to cadmium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The ex vivo and in vitro effects of quercetin on NTPDase, adenosine deaminase (ADA), and acetycholinesterase (AChE) activities in lymphocytes, as well as the effects of quercetin on butyrylcholinesterase (BChE) activity in serum and myeloperoxidase (MPO) activity in plasma were determined in rats. For the ex vivo experiment, animals were orally exposed to Cadmium (Cd) for 45 days. Animals were divided into eight groups: saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. The ex vivo data showed an increase in the ATP and ADP hydrolysis and ADA activity in Cd-exposed rats when compared to the control group. The treatment with quercetin 25 and 50 mg/kg prevented this increase in the ATP and ADP hydrolysis, while the treatment with quercetin 5, 25, and 50 mg/kg prevented the increase in the ADA activity. AChE, BChE, and MPO activities ex vivo presented an increase in the Cd-exposed group when compared to the control group, and the treatment with quercetin 5, 25, and 50 mg/kg prevented this increase caused by Cd exposure. The in vitro experiment showed that quercetin 5, 10, 25, or 50 µM decreased the ADA activity proportionally to the increase of the concentrations of quercetin when compared to the control group. Thus, we can suggest that the quercetin is able to modulate NTPDase, ADA, AChE, and MPO activities and contribute to maintain the levels of ATP, adenosine, and acetylcholine normal, respectively, exhibiting potent pro-inflammatory and anti-inflammatory actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich AGroneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. doi:10.1186/1745-6673-1-22

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. doi:10.1016/j.taap.2009.04.020

    Article  PubMed  Google Scholar 

  3. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure: a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl 1):1–51

    PubMed  Google Scholar 

  4. Jarup L, Hellstrom L, Alfven T, Carlsson MD, Grubb A, Persson B, Pettersson C, Spang G, Schutz A, Elinder CG (2000) Low level exposure to cadmium and early kidney damage: the OSCAR study. Occup Environ Med 57:668–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Goncalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60. doi:10.1016/j.cbi.2010.04.011

    Article  PubMed  CAS  Google Scholar 

  6. Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino AI (2003) Effect of cadmium on lymphocyte subsets distribution in thymus and spleen. J Physiol Biochem 59:43–48

    Article  PubMed  CAS  Google Scholar 

  7. Delves PJ, Roitt IM (2000) The immune system. Second of two parts. N Engl J Med 343:108–117. doi:10.1056/NEJM200007133430207

    Article  PubMed  CAS  Google Scholar 

  8. Rock KL, Hearn A, Chen CJ, Shi Y (2005) Natural endogenous adjuvants. Springer Semin Immunopathol 26:231–246. doi:10.1007/s00281-004-0173-3

    Article  PubMed  Google Scholar 

  9. Mancino G, Placido RDi, Virgilio F (2001) P2X7 receptors and apoptosis in tuberculosis infection. J Biol Regul Homeost Agents 15:286–293

    PubMed  CAS  Google Scholar 

  10. Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696

    Article  PubMed  CAS  Google Scholar 

  11. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404. doi:10.1016/j.pharmthera.2005.04.013

    Article  PubMed  CAS  Google Scholar 

  12. Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T, Baker E, Sutherland GR, Poindexter K, Birks C et al (1994) The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol 153:3574–3583

    PubMed  CAS  Google Scholar 

  13. Burch LHPicher M (2006) E-NTPDases in human airways: regulation and relevance for chronic lung diseases. Purinergic Signal 2:399–408. doi:10.1007/s11302-006-9001-7

    Article  Google Scholar 

  14. Linden J (2006) New insights into the regulation of inflammation by adenosine. J Clin Invest 116:1835–1837. doi:10.1172/JCI29125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zimmermann H (1992) 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285(Pt 2):345–365

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. doi:10.1007/s11302-006-9003-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Conlon BA, Law WR (2004) Macrophages are a source of extracellular adenosine deaminase-2 during inflammatory responses. Clin Exp Immunol 138:14–20. doi:10.1111/j.1365-2249.2004.02591.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Schetinger MR, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. BioFactors 31:77–98

    Article  PubMed  CAS  Google Scholar 

  19. Tayebati SK, El-Assouad D, Ricci A, Amenta F (2002) Immunochemical and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. J Neuroimmunol 132:147–155

    Article  PubMed  CAS  Google Scholar 

  20. de Almeida JP, Saldanha C (2010) Nonneuronal cholinergic system in human erythrocytes: biological role and clinical relevance. J Membr Biol 234:227–234. doi:10.1007/s00232-010-9250-9

    Article  PubMed  CAS  Google Scholar 

  21. Pavlov V, Xiao Y, Willner I (2005) Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett 5:649–653. doi:10.1021/nl050054c

    Article  PubMed  CAS  Google Scholar 

  22. Inacio Lunkes G, Stefanello F, Sausen Lunkes D, Maria Morsch V, Schetinger MR, Goncalves JF (2006) Serum cholinesterase activity in diabetes and associated pathologies. Diabetes Res Clin Pract 72:28–32. doi:10.1016/j.diabres.2005.08.009

    Article  PubMed  Google Scholar 

  23. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  24. Regasini LO, Vellosa JC, Silva DH, Furlan M, de Oliveira OM, Khalil NM, Brunetti IL, Young MC, Barreiro EJ, Bolzani VS (2008) Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry 69:1739-44. doi:10.1016/j.phytochem.2008.01.006

    Article  PubMed  Google Scholar 

  25. Molina MF, Sanchez-Reus I, Iglesias I, Benedi J (2003) Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol Pharm Bull 26:1398–1402

    Article  PubMed  CAS  Google Scholar 

  26. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414–1420

    Article  PubMed  Google Scholar 

  27. Choi EJ, Chee KM, Lee BH (2003) Anti- and prooxidant effects of chronic quercetin administration in rats. Eur J Pharmacol 482:281–285

    Article  PubMed  CAS  Google Scholar 

  28. Lu J, Zheng YL, Luo L, Wu DM, Sun DX, Feng YJ (2006) Quercetin reverses d-galactose induced neurotoxicity in mouse brain. Behav Brain Res 171:251–260. doi:10.1016/j.bbr.2006.03.043

    Article  PubMed  CAS  Google Scholar 

  29. Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

  30. Santos FW, Oro T, Zeni G, Rocha JB, do Nascimento PC, Nogueira CW (2004) Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice. Toxicol Lett 152:255–263. doi:10.1016/j.toxlet.2004.05.009

    Article  PubMed  CAS  Google Scholar 

  31. Goncalves JF, Duarte MM, Fiorenza AM, Spanevello RM, Mazzanti CM, Schmatz R, Bagatini MD, Antes FG, Costa P, Abdalla FH, Dressler VL, Morsch VM, Schetinger MR (2012) Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine. Biometals 25:1195–1206. doi:10.1007/s10534-012-9582-2

    Article  PubMed  CAS  Google Scholar 

  32. Abdalla FH, Cardoso AM, Pereira LB, Schmatz R, Goncalves JF, Stefanello N, Fiorenza AM, Gutierres JM, Serres JD, Zanini D, Pimentel VC, Vieira JM, Schetinger MR, Morsch VM, Mazzanti CM (2013) Neuroprotective effect of quercetin in ectoenzymes and acetylcholinesterase activities in cerebral cortex synaptosomes of cadmium-exposed rats. Mol Cell Biochem 381:1–8. doi:10.1007/s11010-013-1659-x

    Article  PubMed  CAS  Google Scholar 

  33. Braganhol E, Tamajusuku AS, Bernardi A, Wink MR, Battastini AM (2007) Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim Biophys Acta 1770:1352–1359. doi:10.1016/j.bbagen.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  34. Rockenbach L, Bavaresco L, Fernandes Farias P, Cappellari AR, Barrios CH, Bueno Morrone FO, Battastini AM (2013) Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol 31:1204–1211. doi:10.1016/j.urolonc.2011.10.009

    Article  PubMed  CAS  Google Scholar 

  35. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  CAS  Google Scholar 

  36. Bergmeyer H (1983) Methods of enzymatic analysis. Verlag Chemie, Deerfiled Beach

    Google Scholar 

  37. Leal DB, Streher CA, Neu TN, Bittencourt FP, Leal CA, da Silva JE, Morsch VM, Schetinger MR (2005) Characterization of NTPDase (NTPDase1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–15. doi:10.1016/j.bbagen.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  38. Chan K, Delfert D, Junger KD. A direct colorimetric assay for Ca2+-ATPase activity. Anal Biochem 1986;157:375-8

  39. Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425

    PubMed  CAS  Google Scholar 

  40. Ellman GL, Courtney KD, Andres V, Jr Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  41. Fitzgerald BB, Costa LG (1993) Modulation of muscarinic receptors and acetylcholinesterase activity in lymphocytes and in brain areas following repeated organophosphate exposure in rats. Fundam Appl Toxicol 20:210–216

    Article  PubMed  CAS  Google Scholar 

  42. Metcalf J, Gallin WN, Nauseef R (1986) Root, laboratory manual of neutrophil function. Raven Press, New York

    Google Scholar 

  43. Kayyali US, Moore TB, Randall JC, Richardson RJ (1991) Neurotoxic esterase (NTE) assay: optimized conditions based on detergent-induced shifts in the phenol/4-aminoantipyrine chromophore spectrum. J Anal Toxicol 15:86–89

    Article  PubMed  CAS  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  45. Murugavel PP, Pari L (2007) Diallyl tetrasulfide modulates the cadmium-induced impairment of membrane bound enzymes in rats. J Basic Clin Physiol Pharmacol 18:37–48

    Article  PubMed  CAS  Google Scholar 

  46. Thome GR, Mazzanti CM, Ahmed M, Correa M, Spanevello RM, Maldonado PA, Luchese C, Cargnelutti D, Morsch VM, Duarte MM, Fiorenza AM, Nogueira CW, De Bona KS, Moretto MB, Da Luz SC, Mazzanti A, Schetinger MR (2009) Activity of ectonucleotidases and adenosine deaminase in rats exposed to cigarette smoke. Inhal Toxicol 21:906–912. doi:10.1080/08958370802632267

    Article  PubMed  CAS  Google Scholar 

  47. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201–212. doi:10.1038/nri2938

    Article  PubMed  CAS  Google Scholar 

  48. Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, Seman M, Haag F, Koch-Nolte F (2009) NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J Immunol 182:2898–2908. doi:10.4049/jimmunol.0801711

    Article  PubMed  CAS  Google Scholar 

  49. Nair MP, Mahajan S, Reynolds JL, Aalinkeel R, Nair H, Schwartz SA, Kandaswami C (2006) The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-kappa beta system. Clin Vaccine Immunol 13:319–328. doi:10.1128/CVI.13.3.319-328.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Chen JC, Ho FM, Pei-Dawn Lee C, Chen CP, Jeng KC, Hsu HB, Lee ST, Wen Tung W, Lin WW (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20. doi:10.1016/j.ejphar.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  51. Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, Jeong WI, Ryu SY, Do SH, Lee CS, Song JC, Jeong KS (2003) Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-kappaB pathway in lipopolysaccharide-stimulated macrophage. Mol Cell Biochem 243:153–160

    Article  PubMed  CAS  Google Scholar 

  52. Marzena SM, Mateusz K (2012) Review article: flavonoids and their properties to form chelate complexes. Biotechnol Food Sci 76:35–41

    Google Scholar 

  53. Dehghan G, Khoshkam Z (2011) Chelation of toxic Tin(II) by quercetin: a spectroscopic study. Int Conf Life Sci Technol 3:1–3

    Google Scholar 

  54. Rajendran M, Ravichandran R, Devapiriam D (2012) Molecular modeling study of quercetin and their metal complexes. Int J Comput Appl 50:30–34

    Google Scholar 

  55. Jaques J, Rezer J, Ruchel J, Becker L, CS R, Luz S, Gutierres J, JF G, Morch V, Schetinger M, Leal D (2011) Lung and blood lymphocytes NTPDase and acetylcholinesterase activity in cigarette smoke-exposed rats treated with curcumin. Biomed Prevent Nutr 1:109–115

    Article  Google Scholar 

  56. Kaizer RR, Gutierres JM, Schmatz R, Spanevello RM, Morsch VM, Schetinger MR, Rocha JB (2010) In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 265:133–138. doi:10.1016/j.cellimm.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  57. Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547. doi:10.1016/j.neuropharm.2005.10.013

    Article  PubMed  CAS  Google Scholar 

  58. Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Goncalves JF, Correa M, Schmatz R, Stefanello N, Leal DB, Mazzanti A, Ramos AT, Martins TB, Danesi CC, Graca DL, Morsch VM, Schetinger MR (2009) Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci 27:73–80. doi:10.1016/j.ijdevneu.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  59. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol 42:1563–1571. doi:10.1016/j.fct.2004.05.001

    Article  PubMed  CAS  Google Scholar 

  60. Loizzo MR, Tundis R, Menichini F (2008) Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: an update. Curr Med Chem 15:1209–1228

    Article  PubMed  CAS  Google Scholar 

  61. Manjeet KR, Ghosh B (1999) Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int J Immunopharmacol 21:435–443

    Article  CAS  Google Scholar 

  62. Geraets L, Moonen HJ, Brauers K, Wouters EF, Bast A, Hageman GJ (2007) Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr 137:2190–2195

    PubMed  CAS  Google Scholar 

  63. Melzig MF (1996) Inhibition of adenosine deaminase activity of aortic endothelial cells by selected flavonoids. Planta Med 62:20–21. doi:10.1055/s-2006-957788

    Article  PubMed  CAS  Google Scholar 

  64. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalysed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação e Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Federal University of Santa Maria, RS, Brazil, and the FINEP research grant "Rede Instituto Brasileiro de Neurociências (IBNet)”, Instituto Nacional de Ciências Tecnológicas (INCT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fátima Husein Abdalla or Cinthia Melazzo Andrade Mazzanti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26 kb)

Supplementary material 2 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, F.H., Cardoso, A.M., Schmatz, R. et al. Protective effect of quercetin in ecto-enzymes, cholinesterases, and myeloperoxidase activities in the lymphocytes of rats exposed to cadmium. Mol Cell Biochem 396, 201–211 (2014). https://doi.org/10.1007/s11010-014-2155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2155-7

Keywords

Navigation