Skip to main content
Log in

Nitric oxide inhibits the production of soluble endothelin converting enzyme-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study examined the effect of nitric oxide on the production of soluble ECE-1. Activity of ECE-1 in media was measured using a quenched fluorescent substrate assay, and expressed as a percentage of control. Endothelial cells were incubated with the nitric oxide donor Diethylenetriamine NONOate (DETA; 250–800 µM), NOS substrate l-Arg (200–1,000 µM), a l-Arg transport inhibitor (l-Lys; 10 µM) and NOS inhibitors (l-Gln and N5-[imino(nitroamino)methyl]-l-ornithine, methyl ester, monohydrochloride (l-NAME); 10–100 µM). The effect of l-Arg (1,000 µM) was also tested in the presence of l-Lys (10 µM), l-Gln (100 µM) and l-NAME (10–100 µM). Ultracentrifugation (100,000×g, 4 °C, 1 h) completely removed ECE-1 activity from the supernatant. In addition, fractionation of concentrated media on a sucrose density gradient indicated that ECE-1 activity was localised to the mid portion of the gradient, thus suggesting the possible role of exosomes in ECE-1 release. Production of soluble ECE-1 by Ea.hy926 cells was inhibited significantly (P < 0.05, unpaired t test, n = 4) in the presence of DETA (75.31 ± 3.59; 800 µM) and l-Arg (60.97 ± 9.22; 1,000 µM). l-Arg-mediated reduction in the release of soluble ECE-1 was blocked by the inhibition of NOS using l-NAME (100 µM; 99.19 ± 0.58) and l-Gln (100 µM; 104.41 ± 0.65). In addition, the presence of l-Lys (10 µM) significantly blocked the l-Arg (1,000 µM)-induced reduction in soluble ECE-1 levels (122.38 ± 13.16). These treatments had no effect on the expression of ECE-1 on the cell surface. Our data provide evidence that NO can inhibit the production of soluble ECE-1 by endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333(6174):664–666. doi:10.1038/333664a0

    Article  PubMed  CAS  Google Scholar 

  2. Kakoki M, Kim HS, Arendshorst WJ, Mattson DL (2004) l-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am J Physiol Regul Integr Comp Physiol 287(6):R1478–R1485

    Article  PubMed  CAS  Google Scholar 

  3. Kakoki M, Kim HS, Edgell CJ, Maeda N, Smithies O, Mattson DL (2006) Amino acids as modulators of endothelium-derived nitric oxide. Am J Physiol Ren Physiol 291(2):F297–F304

    Article  CAS  Google Scholar 

  4. Meininger CJ, Wu G (1997) l-Glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther 281(1):448–453

    PubMed  CAS  Google Scholar 

  5. Sakurai T, Goto K (1993) Endothelins. Vascular actions and clinical implications. Drugs 46(5):795–804

    Article  PubMed  CAS  Google Scholar 

  6. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415

    Article  PubMed  CAS  Google Scholar 

  7. Ohnaka K, Takayanagi R, Nishikawa M, Haji M, Nawata H (1993) Purification and characterization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium. J Biol Chem 268(35):26759–26766

    PubMed  CAS  Google Scholar 

  8. Kuruppu S, Smith AI (2012) Endothelin converting enzyme-1 phosphorylation and trafficking. FEBS Lett 586(16):2212–2217. doi:10.1016/j.febslet.2012.06.020

    Article  PubMed  CAS  Google Scholar 

  9. Kuruppu S, Reeve S, Ian Smith A (2007) Characterisation of endothelin converting enzyme-1 shedding from endothelial cells. FEBS Lett 581(23):4501–4506

    Article  PubMed  CAS  Google Scholar 

  10. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108. doi:10.1016/j.imlet.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  11. Khamaisi M, Dahan R, Hamed S, Abassi Z, Heyman SN, Raz I (2009) Role of protein kinase C in the expression of endothelin converting enzyme-1. Endocrinology 150(3):1440–1449

    Article  PubMed  CAS  Google Scholar 

  12. Smith AI, Lew RA, Thomas WG, Tochon-Danguy N (2006) Protein kinase C regulates the cell surface activity of endothelin-converting enzyme-1. Int J Pept Res Ther 12(3):291–295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kuruppu S, Tochon-Danguy N, Smith AI (2010) Role of protein kinase C in endothelin converting enzyme-1 trafficking and shedding from endothelial cells. Biochem Biophys Res Commun 398(2):173–177. doi:10.1016/j.bbrc.2010.06.045

    Article  PubMed  CAS  Google Scholar 

  14. Lee CC, Chen PR, Lin S, Tsai SC, Wang BW, Chen WW, Tsai CE, Shyu KG (2004) Sesamin induces nitric oxide and decreases endothelin-1 production in HUVECs: possible implications for its antihypertensive effect. J Hypertens 22(12):2329–2338

    Article  PubMed  CAS  Google Scholar 

  15. Norman MU, Reeve SB, Dive V, Smith AI, Lew RA (2003) Endopeptidases 3.4.24.15 and 24.16 in endothelial cells: potential role in vasoactive peptide metabolism. Am J Physiol Heart Circ Physiol 284(6):H1978–H1984

    PubMed  CAS  Google Scholar 

  16. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393(Pt 3):609–618. doi:10.1042/BJ20051013

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Kuruppu S, Tochon-Danguy N, Smith AI (2012) Protein kinase C recognition sites in the cytoplasmic domain of endothelin converting enzyme-1c. Biochem Biophys Res Commun 427(3):606–610. doi:10.1016/j.bbrc.2012.09.105

    Article  PubMed  CAS  Google Scholar 

  18. Raoch V, Rodriguez-Pascual F, Lopez-Martinez V, Medrano-Andres D, Rodriguez-Puyol M, Lamas S, Rodriguez-Puyol D, Lopez-Ongil S (2011) Nitric oxide decreases the expression of endothelin-converting enzyme-1 through mRNA destabilization. Arterioscler Thromb Vasc Biol 31(11):2577–2585. doi:10.1161/ATVBAHA.111.232025

    Article  PubMed  CAS  Google Scholar 

  19. Kelly LK, Wedgwood S, Steinhorn RH, Black SM (2004) Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase. Am J Physiol Lung Cell Mol Physiol 286(5):L984–L991. doi:10.1152/ajplung.00224.2003

    Article  PubMed  CAS  Google Scholar 

  20. Mather KJ, Lteif A, Steinberg HO, Baron AD (2004) Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes. Diabetes 53(8):2060–2066

    Article  PubMed  CAS  Google Scholar 

  21. Kourembanas S, McQuillan LP, Leung GK, Faller DV (1993) Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Investig 92(1):99–104. doi:10.1172/JCI116604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Li H, Burkhardt C, Heinrich UR, Brausch I, Xia N, Forstermann U (2003) Histamine upregulates gene expression of endothelial nitric oxide synthase in human vascular endothelial cells. Circulation 107(18):2348–2354. doi:10.1161/01.CIR.0000066697.19571.AF

    Article  PubMed  CAS  Google Scholar 

  23. Kuruppu S, Tochon-Danguy N, Ian Smith A (2010) Role of protein kinase C in endothelin converting enzyme-1 trafficking and shedding from endothelial cells. Biochem Biophys Res Commun 398(2):173–177

    Article  PubMed  CAS  Google Scholar 

  24. Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S, Zentgraf H, Fogel M, Altevogt DP (2003) ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 17(2):292–294. doi:10.1096/fj.02-0430fje

    PubMed  CAS  Google Scholar 

  25. Mathews JA, Gibb DR, Chen BH, Scherle P, Conrad DH (2010) CD23 sheddase A disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J Biol Chem 285(48):37531–37541. doi:10.1074/jbc.M110.141556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379. doi:10.1681/ASN.2008040406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Hatzoglou M, Fernandez J, Yaman I, Closs E (2004) Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr 24:377–399. doi:10.1146/annurev.nutr.23.011702.073120

    Article  PubMed  CAS  Google Scholar 

  28. Bzowska M, Stalinska K, Mezyk-Kopec R, Wawro K, Duda K, Das S, Bereta J (2009) Exogenous nitric oxide inhibits shedding of ADAM17 substrates. Acta Biochim Pol 56(2):325–335

    PubMed  CAS  Google Scholar 

  29. Kuruppu S, Chou SH, Feske SK, Suh S, Hanchapola I, Lo EH, Ning M, Smith AI (2013) Soluble and catalytically active endothelin converting enzyme-1 is present in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol Cell Proteomics. doi:10.1074/mcp.M113.027359

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Health and Medical Research Council of Australia (Program Grant ID 490990), as well as the National Heart Foundation of Australia (NHF PF09M4668). We wish to thank Prof Helena Parkington (Department of Physiology, Monash University) for providing us with DETA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaya Kuruppu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuruppu, S., Rajapakse, N.W., Dunstan, R.A. et al. Nitric oxide inhibits the production of soluble endothelin converting enzyme-1. Mol Cell Biochem 396, 49–54 (2014). https://doi.org/10.1007/s11010-014-2141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2141-0

Keywords

Navigation