Skip to main content

Advertisement

Log in

Lyar, a cell growth-regulating zinc finger protein, was identified to be associated with cytoplasmic ribosomes in male germ and cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Translational control is a basic mechanism for gene regulation in cells and important for tissue growth and development in mammals. Deregulation of the mechanism thus causes diseases such as cancer. Considering the importance of the ribosome as a factory of polypeptide synthesis, some new factors have been expected to be associated with the ribosome and involved in translational control. Our proteomic survey for these factors identified a zinc finger protein, Lyar, in cytoplasmic ribosomes of the rodent testis. Subcellular fractionation of the testis provided data supporting association of Lyar with ribosomes. Lyar was then suggested to be included in the 60S large subunit, but not in polysomes, by ultracentrifugation of testicular ribosomes. While analysis of tissue distribution of Lyar has indicated its testis-predominant expression, Lyar mRNA was expressed in the cancer cells originated from tissues other than testis, and Lyar promoted proliferation of NIH-3T3 cells. Furthermore, translation was increased by Lyar in vitro, pointing out the first experimental link between this protein and translation. Taken together, Lyar seems to be a new player in translational control and a potential target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

MBP:

Maltose-binding protein

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NCBI:

National center for biotechnology information

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

PMF:

Peptide mass fingerprint

RT:

Reverse transcription

SDS:

Sodium dodecyl sulfate

TOF:

Time-of-flight

References

  1. McConkey EH, Bielka H, Gordon J, Lastick SM, Lin A, Ogata K, Reboud JP, Traugh JA, Traut RR, Warner JR, Welfle H, Wool IG (1979) Proposed uniform nomenclature for mammalian ribosomal proteins. Mol Gen Genet 169:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Wool IG, Chan YL, Gluck A (1995) Structure and evolution of mammalian ribosomal proteins. Biochem Cell Biol 73:933–947

    Article  CAS  PubMed  Google Scholar 

  3. Sugihara Y, Honda H, Iida T, Morinaga T, Hino S, Okajima T, Matsuda T, Nadano D (2010) Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like. J Proteome Res 9:1351–1366

    Article  CAS  PubMed  Google Scholar 

  4. Sugihara Y, Sadohara E, Yonezawa K, Kugo M, Oshima K, Matsuda T, Nadano D (2013) Identification and expression of an autosomal paralogue of ribosomal protein S4, X-linked, in mice: potential involvement of testis-specific ribosomal proteins in translation and spermatogenesis. Gene 521:91–99

    Article  CAS  PubMed  Google Scholar 

  5. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Filipovska A, Rackham O (2013) Specialization from synthesis: how ribosome diversity can customize protein function. FEBS Lett 587:1189–1197

    Article  CAS  PubMed  Google Scholar 

  7. Dresios J, Panopoulos P, Synetos D (2006) Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 59:1651–1663

    Article  CAS  PubMed  Google Scholar 

  8. Stumpf CR, Ruggero D (2011) The cancerous translation apparatus. Curr Opin Genet Dev 21:474–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Teng T, Thomas G, Mercer CA (2013) Growth control and ribosomopathies. Curr Opin Genet Dev 23:63–71

    Article  CAS  PubMed  Google Scholar 

  10. Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729

    Article  CAS  PubMed  Google Scholar 

  11. Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res 103:217–224

    Article  CAS  PubMed  Google Scholar 

  12. Jackson RJ, Hellen CUT, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  Google Scholar 

  13. Su L, Hershberger RJ, Weissman IL (1993) LYAR, a novel nucleolar protein with zinc finger DNA-binding motifs, is involved in cell growth regulation. Genes Dev 7:735–748

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Wang B, Yang A, Lu R, Wang W, Zhou Y, Shi G, Kwon SW, Zhao Y, Jin Y (2009) Ly-1 antibody reactive clone is an important nucleolar protein for control of self-renewal and differentiation in embryonic stem cells. Stem Cells 27:1244–1254

    Article  CAS  PubMed  Google Scholar 

  15. Wang G, Fulkerson CM, Malek R, Ghassemifar S, Snyder PW, Mendrysa SM (2012) Mutations in Lyar and p53 are synergistically lethal in female mice. Birth Defects Res A Clin Mol Teratol 94:729–737

    Article  CAS  PubMed  Google Scholar 

  16. Lee B, Jin S, Choi H, Kwon JT, Kim J, Jeong J, Kwon YI, Cho C (2013) Expression and function of the testis-predominant protein LYAR in mice. Mol Cells 35:54–60

    Article  PubMed Central  PubMed  Google Scholar 

  17. Miyazawa N, Yoshikawa H, Magae S, Ishikawa H, Izumikawa K, Terukina G, Suzuki A, Nakamura-Fujiyama S, Miura Y, Hayano T, Komatsu W, Isobe T, Takahashi N (2014) Human cell growth regulator Ly-1 antibody reactive homologue accelerates processing of preribosomal RNA. Genes Cells 19:273–286

    Article  CAS  PubMed  Google Scholar 

  18. Miyoshi M, Okajima T, Matsuda T, Fukuda MN, Nadano D (2007) Bystin in human cancer cells: intracellular localization and function in ribosome biogenesis. Biochem J 404:373–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Taga Y, Miyoshi M, Okajima T, Matsuda T, Nadano D (2010) Identification of heterogeneous nuclear ribonucleoprotein A/B as a cytoplasmic mRNA-binding protein in early involution of the mouse mammary gland. Cell Biochem Funct 28:321–328

    Article  CAS  PubMed  Google Scholar 

  20. Akiyama Y, Oshima K, Shin K, Wakabayashi H, Abe F, Nadano D, Matsuda T (2013) Intracellular retention and subsequent release of bovine milk lactoferrin taken up by human enterocyte-like cell lines, Caco-2, C2BBe1 and HT-29. Biosci Biotech Biochem 77:1023–1029

    Article  CAS  Google Scholar 

  21. Nakamura M, Tomita A, Nakatani H, Matsuda T, Nadano D (2006) Antioxidant and antibacterial genes are upregulated in early involution of the mouse mammary gland: sharp increase of ceruloplasmin and lactoferrin in accumulating breast milk. DNA Cell Biol 25:491–500

    Article  CAS  PubMed  Google Scholar 

  22. Hosono H, Yamaguchi N, Oshima K, Matsuda T, Nadano D (2012) The murine Gcap14 gene encodes a novel microtubule binding and bundling protein. FEBS Lett 586:1426–1430

    Article  CAS  PubMed  Google Scholar 

  23. Warner JR (1990) The nucleolus and ribosome formation. Curr Opin Cell Biol 2:521–527

    Article  CAS  PubMed  Google Scholar 

  24. Horigome C, Mizuta K (2012) Ribosome biogenesis factors working with a nuclear envelope SUN domain protein: new players in the solar system. Nucleus 3:22–28

    Article  PubMed  Google Scholar 

  25. Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10:254–266

    Article  CAS  PubMed  Google Scholar 

  26. Monesi V (1967) Ribonucleic acid and protein synthesis during differentiation of male germ cells in the mouse. Arch Anat Microsc Morphol Exp 56:61–74

    CAS  PubMed  Google Scholar 

  27. Beckler GS, Thompson D, Van Oosbree T (1995) In vitro translation using rabbit reticulocyte lysate. Methods Mol Biol 37:215–232

    CAS  PubMed  Google Scholar 

  28. Morley SJ, Hershey JWB (1990) A fractionated reticulocyte lysate retains high efficiency for protein synthesis. Biochimie 72:259–264

    Article  CAS  PubMed  Google Scholar 

  29. Kirkin AF, Dzhandzhugazyan KN, Zeuthen J (2002) Cancer/testis antigens: structural and immunological properties. Cancer Invest 20:222–236

    Article  CAS  PubMed  Google Scholar 

  30. Simpson AJG, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  CAS  PubMed  Google Scholar 

  31. Nadano D, Notsu T, Matsuda T, Sato T (2002) A human gene encoding a protein homologous to ribosomal protein L39 is normally expressed in the testis and derepressed in multiple cancer cells. Biochim Biophys Acta 1577:430–436

    Article  CAS  PubMed  Google Scholar 

  32. Uechi T, Maeda N, Tanaka T, Kenmochi N (2002) Functional second genes generated by retrotransposition of the X-linked ribosomal protein genes. Nucleic Acids Res 30:5369–5375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9:799–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Johnson AW, Ellis SR (2011) Of blood, bones, and ribosomes: is Shwachman-Diamond syndrome a ribosomopathy? Genes Dev 25:898–900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kim B, Park K, Rhee K (2013) Heat stress response of male germ cells. Cell Mol Life Sci 70:2623–2636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant-in-aid for Scientific Research (25450514) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daita Nadano.

Additional information

Kahori Yonezawa, Yoshihiko Sugihara have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonezawa, K., Sugihara, Y., Oshima, K. et al. Lyar, a cell growth-regulating zinc finger protein, was identified to be associated with cytoplasmic ribosomes in male germ and cancer cells. Mol Cell Biochem 395, 221–229 (2014). https://doi.org/10.1007/s11010-014-2128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2128-x

Keywords

Navigation