Skip to main content
Log in

Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although fatty acids are important components of biological membranes, energy sources, and signal transducers or precursors of lipid mediators, excess intake of fatty acids and their accumulation cause obesity and metabolic syndrome. Thus, fatty acid quantity is known to be an important factor for obesity-related diseases, but the effects of different types of fatty acids (i.e., fatty acid quality) on human health are not completely understood. We here focused on the relationship between fatty acid quality and oxidative stress by investigating whether resistibility to tert-butyl hydrperoxide (t-BuOOH)-induced oxidative stress in 3T3-L1 cells varied according to the fatty acid type. Among eight fatty acids (both saturated and unsaturated) tested, oleic acid (OA) exerted the most pronounced cytoprotective effects, with efficacy over a wide range of concentrations. OA treatment markedly enhanced the intracellular levels of lipid peroxidation markers, including N ε-(hexanoyl)lysine, 4-hydroxy-2-nonenal, and acrolein. The levels of these markers in OA-treated cells were decreased after t-BuOOH exposure, whereas the levels in untreated control cells were notably increased after t-BuOOH exposure. Our results suggested that unsaturated fatty acids, particularly OA, could promote an adaptive response and enhance cell tolerance through increased cellular antioxidative capacity via OA-induced mild lipid peroxidation (lipohormesis), and thus protect cells against subsequent oxidative stress-related injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8:923–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84:705–712

    Article  CAS  PubMed  Google Scholar 

  3. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10:9–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE (2009) Diabetes and apoptosis: lipotoxicity. Apoptosis 14:1484–1495

    Article  CAS  PubMed  Google Scholar 

  6. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  7. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  8. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897

    Article  CAS  PubMed  Google Scholar 

  9. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Holzer RG, Park EJ, Li N, Tran H, Chen M, Choi C, Solinas G, Karin M (2011) Saturated fatty acids induce c-Src clustering within membrane subdomains leading to JNK activation. Cell 147:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ford ES, Mokdad AH, Giles WH, Brown DW (2003) The metabolic syndrome and antioxidant concentrations: findings from the third national health and nutrition examination survey. Diabetes 52:2346–2352

    Article  CAS  PubMed  Google Scholar 

  12. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676

    Article  CAS  PubMed  Google Scholar 

  13. Ceriello A, Motz E (2004) Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816–823

    Article  CAS  PubMed  Google Scholar 

  14. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Saitoh Y, Mizuno H, Xiao L, Hyoudou S, Kokubo K, Miwa N (2012) Polyhydroxylated fullerene C60(OH)44 suppresses intracellular lipid accumulation together with repression of intracellular superoxide anion radicals and subsequent PPARγ2 expression during spontaneous differentiation of OP9 preadipocytes into adipocytes. Mol Cell Biochem 366:191–200

    Article  CAS  PubMed  Google Scholar 

  16. Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H, Kokubo K, Miwa N (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44:1072–1081

    Article  CAS  PubMed  Google Scholar 

  17. Borradaile NM, Buhman KK, Listenberger LL, Magee CJ, Morimoto ET, Ory DS, Schaffer JE (2006) A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death. Mol Biol Cell 17:770–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Ito T, Zechner R, Komuro I, Kobayashi Y, Minamino T (2012) p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab 15:51–64

    Article  CAS  PubMed  Google Scholar 

  20. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  Google Scholar 

  21. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  22. Saitoh Y, Miwa N (2004) Cytoprotection of vascular endotheliocytes by phosphorylated ascorbate through suppression of oxidative stress that is generated immediately after post-anoxic reoxygenation or with alkylhydroperoxides. J Cell Biochem 93:653–663

    Article  CAS  PubMed  Google Scholar 

  23. Shibata T, Iio K, Kawai Y, Shibata N, Kawaguchi M, Toi S, Kobayashi M, Kobayashi M, Yamamoto K, Uchida K (2006) Identification of a lipid peroxidation product as a potential trigger of the p53 pathway. J Biol Chem 281:1196–1204

    Article  CAS  PubMed  Google Scholar 

  24. Kawai Y, Fujii H, Okada M, Tsuchie Y, Uchida K, Osawa T (2006) Formation of Nepsilon-(succinyl) lysine in vivo: a novel marker for docosahexaenoic acid-derived protein modification. J Lip Res 47:1386–1398

    Article  CAS  Google Scholar 

  25. Sandstrom PA, Pardi D, Tebbey PW, Dudek RW, Terrian DM, Folks TM, Buttke TM (1995) Lipid hydroperoxide-induced apoptosis: lack of inhibition by Bcl-2 over-expression. FEBS Lett 365:66–70

    Article  CAS  PubMed  Google Scholar 

  26. Mahipal SV, Subhashini J, Reddy MC, Reddy MM, Anilkumar K, Roy KR, Reddy GV, Reddanna P (2007) Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem Pharmacol 74:202–214

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Shibata T, Hisaka S, Kawai Y, Osawa T (2008) DHA hydroperoxides as a potential inducer of neuronal cell death: a mitochondrial dysfunction-mediated pathway. J Clin Biochem Nutr 43:26–33

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schrenzel J, Serrander L, Bánfi B, Nüsse O, Fouyouzi R, Lew DP, Demaurex N, Krause KH (1998) Electron currents generated by the human phagocyte NADPH oxidase. Nature 392:734–737

    Article  CAS  PubMed  Google Scholar 

  29. Saitoh Y, Morishita A, Mito S, Tsujiya T, Miwa N (2013) Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts. Mol Cell Biochem 380:129–141

    Article  CAS  PubMed  Google Scholar 

  30. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  PubMed  Google Scholar 

  31. Moore GA, Jewell SA, Bellomo G, Orrenius S (1983) On the relationship between Ca2+ efflux and membrane damage during t-butylhydroperoxide metabolism by liver mitochondria. FEBS Lett 153:289–292

    Article  CAS  PubMed  Google Scholar 

  32. Nelson KC, Armstrong JS, Moriarty S, Cai J, Wu MW, Sternberg P Jr, Jones DP (2002) Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent. Invest Ophthalmol Vis Sci 43:3550–3554

    PubMed  Google Scholar 

  33. Comporti M (1987) Glutathione depleting agents and lipid peroxidation. Chem Phys Lipids 45:143–169

    Article  CAS  PubMed  Google Scholar 

  34. Kaneko T, Honda S, Nakano S, Matsuo M (1987) Lethal effects of a linoleic acid hydroperoxide and its autoxidation products, unsaturated aliphatic aldehydes, on human diploid fibroblasts. Chem Biol Interact 63:127–137

    Article  CAS  PubMed  Google Scholar 

  35. Kato S, Aoshima H, Saitoh Y, Miwa N (2010) Defensive effects of fullerene-C60 dissolved in squalane against the 2,4-nonadienal-induced cell injury in human skin keratinocytes HaCaT and wrinkle formation in 3D-human skin tissue model. J Biomed Nanotechnol 6:52–58

    Article  CAS  PubMed  Google Scholar 

  36. Saitoh Y, Ouchida R, Kayasuga A, Miwa N (2003) Anti-apoptotic defense of bcl-2 gene against hydroperoxide-induced cytotoxicity together with suppressed lipid peroxidation, enhanced ascorbate uptake, and upregulated Bcl-2 protein. J Cell Biochem 89:321–334

    Article  CAS  PubMed  Google Scholar 

  37. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R (2012) Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15:518–533

    Article  CAS  PubMed  Google Scholar 

  38. Kinter M, Spitz DR, Roberts RJ (1996) Oleic acid incorporation protects cultured hamster fibroblasts from oxygen-induced cytotoxicity. J Nutr 126:2952–2959

    CAS  PubMed  Google Scholar 

  39. Chen ZH, Saito Y, Yoshida Y, Sekine A, Noguchi N, Niki E (2005) 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J Biol Chem 280:41921–41927

    Article  CAS  PubMed  Google Scholar 

  40. Chen ZH, Yoshida Y, Saito Y, Sekine A, Noguchi N, Niki E (2006) Induction of adaptive response and enhancement of PC12 cell tolerance by 7-hydroxycholesterol and 15-deoxy-delta (12,14)-prostaglandin J2 through up-regulation of cellular glutathione via different mechanisms. J Biol Chem 281:14440–14445

    Article  CAS  PubMed  Google Scholar 

  41. Chen ZH, Yoshida Y, Saito Y, Noguchi N, Niki E (2006) Adaptive response induced by lipid peroxidation products in cell cultures. FEBS Lett 580:479–483

    Article  CAS  PubMed  Google Scholar 

  42. Merwald H, Klosner G, Kokesch C, Der-Petrossian M, Hönigsmann H, Trautinger F (2005) UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J Photochem Photobiol B 79:197–207

    Article  CAS  PubMed  Google Scholar 

  43. Surh YJ, Kundu JK, Li MH, Na HK, Cha YN (2009) Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch Pharm Res 32:1163–1176

    Article  CAS  PubMed  Google Scholar 

  44. Ohnishi K, Nakahata E, Irie K, Murakami A (2013) Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy. Biochem Biophys Res Commun 430:616–622

    Article  CAS  PubMed  Google Scholar 

  45. Ohnishi K, Ohkura S, Nakahata E, Ishisaka A, Kawai Y, Terao J, Mori T, Ishii T, Nakayama T, Kioka N, Matsumoto S, Ikeda Y, Akiyama M, Irie K, Murakami A (2013) Non-specific protein modifications by a phytochemical induce heat shock response for self-defense. PLoS ONE 8:e58641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. De Lorgeril M (2007) Essential polyunsaturated fatty acids, inflammation, atherosclerosis and cardiovascular diseases. Subcell Biochem 42:283–297

    Article  PubMed  Google Scholar 

  47. Ziboh VA, Miller CC, Cho Y (2000) Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr 71:361S–366S

    CAS  PubMed  Google Scholar 

  48. Pérez-Martínez P, García-Ríos A, Delgado-Lista J, Pérez-Jiménez F, López-Miranda J (2011) Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr Pharm Des 17:769–777

    Article  PubMed  Google Scholar 

  49. Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR (2013) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13:201–210

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hiromi Mizuno and Ms. Sayaka Suzuki for their encouragement and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Saitoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeiwa, H., Fujita, T., Saitoh, Y. et al. Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis. Mol Cell Biochem 386, 73–83 (2014). https://doi.org/10.1007/s11010-013-1846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1846-9

Keywords

Navigation