Skip to main content

Advertisement

Log in

Differential remodeling of cadherins and intermediate cytoskeletal filaments influence microenvironment of solid and ascitic sarcoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Different forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm. In our present study, we characterized the deferentially remodeled microenvironment in solid and ascitic tumors by sequential immunohistochemistry and flowcytometric analysis of E-cdaherin, N-cadherin, vimentin, and cytokeratin along with angiogenesis and metastasis. In addition, we considered flowcytometric apoptosis and CD133 positive cancer stem cell analysis. Comparative hemogram was also considered as a part. Our investigation revealed that both types of tumor promoted neovascularization over time with sign of local inflammation. Invasion of neighboring skeletal muscle by solid sarcoma was more frequent than its ascitic counterpart. In contrary, rapid and earlier cadherin switching (E-cadherin to N-cadherin) in ascitic sarcoma made them more aggressive than that of solid sarcoma and helped to early metastasize distant tissue like liver through the hematogenous route. Differential cadherin switching and infidelity of cytokeratin expression in Vimentin positive sarcoma also influenced the behavior of ascitic CD133+ cancer initiating cell pool with respect to CD133+ cells housed in solid sarcoma. Therefore our study concludes that differential cadherin switching program and infidelity of intermediate filaments in part, sharply discriminate the severity and metastatic potentiality of either type of sarcoma accompanying with CD133+ cellular repertoire. Besides, tumor phenotype-based dichotomous cadherin switching program could be exploited as a future drug target to manage decompensated malignant ascitic and solid sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wibmer C, Leithner A, Zielonke N, Sperl M, Windhager R (2010) Increasing incidence rates of soft tissue sarcomas? A population-based epidemiologic study and literature review. Ann Oncol 21:1106–1111. doi:10.1093/annonc/mdp415

    Article  PubMed  CAS  Google Scholar 

  2. Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293. doi:10.1186/bcr309

    Article  PubMed  CAS  Google Scholar 

  3. Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61–70. doi:10.1158/1541-7786.MCR-06-0002

    Article  PubMed  CAS  Google Scholar 

  4. Derycke LD, Bracke ME (2004) N-cadherin in the spotlight of cell–cell adhesion, differentiation, embryogenesis, invasion and signaling. Int J Dev Biol 48:463–476. doi:10.1387/ijdb.041793ld

    Article  PubMed  CAS  Google Scholar 

  5. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical model. Cancer Res 63:3847–3854

    PubMed  CAS  Google Scholar 

  6. Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39:251–257. doi:10.1007/s10863-007-9085-y

    Article  PubMed  CAS  Google Scholar 

  7. Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425–427. doi:10.1038/bjc.1991.326

    Article  PubMed  CAS  Google Scholar 

  8. Nicole NP, Dietmar WS (2001) The microenvironment in cancer tumor. In: Dietmar WS (ed) Tumor microenvironment. Wiley, Gainesville, pp 1–6

    Google Scholar 

  9. Stasinopoulos I, Peneta M, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM (2011) Exploiting the tumor microenvironment for theranostic imaging. NMR Biomed 24:636–647. doi:10.1002/nbm.1664

    PubMed  Google Scholar 

  10. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454. doi:10.1093/jnci/djm135

    Article  PubMed  Google Scholar 

  11. Castells M, Thibault B, Delord JP, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13:9545–9571. doi:10.3390/ijms13089545

    Article  PubMed  CAS  Google Scholar 

  12. Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH, Semenza GL (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731. doi:10.1158/0008-5472.CAN-05-3719

    Article  PubMed  CAS  Google Scholar 

  13. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K (2009) Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA 106:3372–3377. doi:10.1073/pnas.0813306106

    Article  PubMed  CAS  Google Scholar 

  14. Bilici A, Uygun K, Altun E, Karci E, Gurbuz Y, Semih Dogan A (2009) Primary peritoneal spindle cell sarcoma presented with massive ascites: a case report. J BUON 14:721–723

    PubMed  CAS  Google Scholar 

  15. Oei TN, Jagannathan JP, Ramaiya N, Ros PR (2010) Peritoneal sarcomatosis versus peritoneal carcinomatosis: imaging findings at MDCT. Am J Roentgenol 195:W229–W235. doi:10.2214/AJR.09.3907

    Article  Google Scholar 

  16. Yokoi M, Hosokawa K, Funaki H, Yoshitani S, Kinami S, Omote K, Ueda N, Nakano Y, Kosaka T, Minato H (2009) A case of retroperitoneal dedifferentiated liposarcoma successfully treated with IFM and CDDP. Gan To Kagaku Ryoho 36:2114–2116

    PubMed  Google Scholar 

  17. Colizza S, Di Maurizio P, Bracci F, Bigotti A, Crisci E (1981) Diffuse peritoneal liposarcoma-report of one case. J Surg Oncol 18:147–151. doi:10.1002/jso.2930180207

    Article  PubMed  CAS  Google Scholar 

  18. Leal R, Lewin M, Ahmad I, Korula J (1994) Peritoneal Kaposi’s sarcoma: a cause of ascites in acquired immunodeficiency syndrome. Dig Dis Sci 39:206–208. doi:10.1007/BF02090084

    Article  PubMed  CAS  Google Scholar 

  19. Mimeault M, Batra SK (2007) Interplay of distinct growth factors during epithelial–mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann Oncol 18:1605–1619. doi:10.1093/annonc/mdm070

    Article  PubMed  CAS  Google Scholar 

  20. Kim JB, Islam S, Kim YJ, Prudoff RS, Sass KM, Wheelock MJ, Johnson KR (2000) N-cadherin extracellular repeat four mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 151:1193–1206. doi:10.1083/jcb.151.6.1193

    Article  PubMed  CAS  Google Scholar 

  21. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392:190–193. doi:10.1038/32433

    Article  PubMed  CAS  Google Scholar 

  22. Hazan RB, Kang L, Whooley BP, Borgen PI (1997) N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhes Commun 4:399–411

    Article  PubMed  CAS  Google Scholar 

  23. Kamei J, Toyofuku T, Hori M (2003) Negative regulation of p21 by β catenin/TCF signaling: a novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Commun 312:380–387. doi:10.1016/j.bbrc.2003.10.129

    Article  PubMed  CAS  Google Scholar 

  24. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 189:541–556. doi:10.1083/jcb.200909113

    Article  PubMed  CAS  Google Scholar 

  25. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, Pirozzi G, Papaccio G (2011) Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J 25:2022–2030. doi:10.1096/fj.10-179036

    Article  PubMed  CAS  Google Scholar 

  26. Jiang X, Gwye Y, Russell D, Cao C, Douglas D, Hung L, Kovar H, Triche TJ, Lawlor ER (2010) CD133 expression in chemo-resistant Ewing sarcoma cells. BMC Cancer 10:116. doi:10.1186/1471-2407-10-116

    Article  PubMed  Google Scholar 

  27. Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suvà D, Clément V, Provero P, Cironi L, Osterheld MC, Guillou L, Stamenkovic I (2009) Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res 69:1776–1781. doi:10.1158/0008-5472.CAN-08-2242

    Article  PubMed  CAS  Google Scholar 

  28. Terry J, Nielsen T (2010) Expression of CD133 in synovial sarcoma. Appl Immunohistochem Mol Morphol 18:159–165. doi:10.1097/PAI.0b013e3181b77451

    Article  PubMed  CAS  Google Scholar 

  29. Stratford EW, Castro R, Wennerstrom A, Holm R, Munthe E, Lauvrak S, Bjerkehagen B, Myklebost O (2011) Liposarcoma cells with aldefluor and CD133 activity have a cancer stem cell potential. Clin Sarcoma Res 1:1–11. doi:10.1186/2045-3329-1-8

    Article  Google Scholar 

  30. Zaslavsky A, Chen C, Grillo J, Baek KH, Holmgren L, Yoon SS, Folkman J, Ryeom S (2010) Regional control of tumor growth. Mol Cancer Res 8:1198–1206. doi:10.1158/1541-7786.MCR-10-0047

    Article  PubMed  CAS  Google Scholar 

  31. Chaklader M, Das P, Pereira JA, Law A, Chattopadhyay S, Chatterjee R, Mondal A, Law S (2012) 17-AAG mediated targeting of Hsp90 limits TERT activity in peritoneal sarcoma related malignant ascites by downregulating cyclin D1 during cell cycle entry. Exp Oncol 34:90–96

    PubMed  CAS  Google Scholar 

  32. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR (2008) Cadherin switching. J Cell Sci 121:727–735. doi:10.1242/jcs.000455

    Article  PubMed  CAS  Google Scholar 

  33. Hong S, Troyanovsky RB, Troyanovsky SM (2011) Cadherin exits the junction by switching its adhesive bond. J Cell Biol 192(6):1073–1083. doi:10.1083/jcb.201006113

    Article  PubMed  CAS  Google Scholar 

  34. Tomita K, van Bokhoven A, van Leenders GJLH, Ruijter ETG, Jansen C, Bussemakers MJG, Schalken JA (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654

    PubMed  CAS  Google Scholar 

  35. Tian W, Wang G, Yang J, Pan Y, Ma Y (2013) Prognostic role of E-cadherin and vimentin expression in various subtypes of soft tissue leiomyosarcomas. Med Oncol 30:401. doi:10.1007/s12032-012-0401-y

    Article  PubMed  Google Scholar 

  36. Püsküllüoglu M, Lukasiewicz E, Miekus K, Jarocha D, Majka M (2010) Differential expression of Snail1 transcription factor and Snail1-related genes in alveolar and embryonal rhabdomyosarcoma subtypes. Folia Histochem Cytobiol 48:671–677. doi:10.2478/v10042-010-0046-7

    PubMed  Google Scholar 

  37. Subramaniam MM, Navarro S, Llombart-Bosch A (2011) Immunohistochemical study of correlation between histologic subtype and expression of epithelial-mesenchymal transition-related proteins in synovial sarcomas. Arch Pathol Lab Med 135:1001–1009. doi:10.5858/2010-0071-OAR1

    Article  PubMed  CAS  Google Scholar 

  38. Laskin WB, Miettinen M (2002) Epithelial-type and neural-type cadherin expression in malignant noncarcinomatous neoplasms with epithelioid features that involve the soft tissues. Arch Pathol Lab Med 126:425–431

    PubMed  Google Scholar 

  39. Saito T, Oda Y, Sugimachi K, Kawaguchi K, Tamiya S, Tanaka K, Matsuda S, Sakamoto A, Iwamoto Y, Tsuneyoshi M (2001) E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features. Am J Pathol 159:2117–2124

    Article  PubMed  CAS  Google Scholar 

  40. Ureshino H, Murakami Y, Watari K, Izumi H, Kawahara A, Kage M, Arao T, Nishio K, Yanagihara K, Kinoshita H, Kuwano M, Ono M (2012) N-myc downstream regulated gene 1 (NDRG1) promotes metastasis of human scirrhous gastric cancer cells through epithelial mesenchymal transition. PLoS One 7:e41312. doi:10.1371/journal.pone.0041312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors are thankful to the director of the Calcutta School of Tropical Medicine.

Conflict of interest

All authors unanimously declared no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Law.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaklader, M., Pan, A., Law, A. et al. Differential remodeling of cadherins and intermediate cytoskeletal filaments influence microenvironment of solid and ascitic sarcoma. Mol Cell Biochem 382, 293–306 (2013). https://doi.org/10.1007/s11010-013-1750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1750-3

Keywords

Navigation