Skip to main content

Advertisement

Log in

Distinctive microRNA expression signatures in proton-irradiated mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W et al (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4:e6377. doi:10.1371/journal.pone.0006377

    Article  PubMed  Google Scholar 

  2. Sorokina S, Markova E, Gursky J, Dobrovodsky J, Belyaev I (2013) Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γ-H2AX foci in lymphocytes from umbilical cord blood. Int J Radiat Biol. May 22. [Epub ahead of print]

  3. Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL (2011) Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res. 176(3):291–302 Epub 2011 Jul 6

    Article  PubMed  CAS  Google Scholar 

  4. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108

    Article  PubMed  CAS  Google Scholar 

  5. Dickey JS, Zemp FJ, Martin OA, Kovalchuk O (2011) The role of miRNA in the direct and indirect effects of ionizing radiation. Radiat Environ Biophys 50:491–499. doi:10.1007/s00411-011-0386-5

    Article  PubMed  CAS  Google Scholar 

  6. Ilnytskyy Y, Koturbash I, Kovalchuk O (2009) Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner. Environ Mol Mutagen 50:105–113. doi:10.1002/em.20440

    Article  PubMed  CAS  Google Scholar 

  7. Maes OC, An J, Sarojini H, Wu H, Wang E (2008) Changes in microRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem 105:824–834. doi:10.1002/jcb.21878

    Article  PubMed  CAS  Google Scholar 

  8. Cui W, Ma J, Wang Y, Biswal S (2011) Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry. PLoS One 6:e22988. doi:10.1371/journal.pone.0022988

    Article  PubMed  CAS  Google Scholar 

  9. Ng WL, Yan D, Zhang X, Mo YY, Wang Y (2010) Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst) 9:1170–1175. doi:10.1016/j.dnarep.2010.08.007

    Article  CAS  Google Scholar 

  10. Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, Zhang W et al (2011) Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 20:4025–4040. doi:10.1093/hmg/ddr331

    Article  PubMed  CAS  Google Scholar 

  11. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA (2008) Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68:1599–1606. doi:10.1002/pros.20827

    Article  PubMed  CAS  Google Scholar 

  12. Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, Zhou H et al (2009) MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 4:e7826. doi:10.1371/journal.pone.0007826

    Article  PubMed  Google Scholar 

  13. Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E et al (2009) Distinct microRNA alterations characterize high and low-grade bladder cancer. Cancer Res 69:8472–8481. doi:10.1158/0008-5472.CAN-09-0744

    Article  PubMed  CAS  Google Scholar 

  14. Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM (2009) Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 48:569–582. doi:10.1002/gcc.20666

    Article  PubMed  CAS  Google Scholar 

  15. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68:425–433. doi:10.1158/0008-5472.CAN-07-2488

    Article  PubMed  CAS  Google Scholar 

  16. Thorgeirsson SS (2011) The almighty MYC: orchestrating the micro-RNA universe to generate aggressive liver cancer. J Hepatol 55:486–487. doi:10.1016/j.jhep.2011.01.042

    Article  PubMed  Google Scholar 

  17. Jiang J, Lee EJ, Gusev Y, Schmittgen TD (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33:5394–5403. doi:10.1093/nar/gki863

    Article  PubMed  CAS  Google Scholar 

  18. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 105:19300–19305. doi:10.1073/pnas.0803992105

    Article  PubMed  CAS  Google Scholar 

  19. Fletcher AM, Heaford AC, Trask DK (2008) Detection of metastatic head and neck squamous cell carcinoma using the relative expression of tissue-specific mir-205. Transl Oncol 1:202–208

    PubMed  Google Scholar 

  20. Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M et al (2009) Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol 174:736–745. doi:10.2353/ajpath.2009.080731

    Article  PubMed  CAS  Google Scholar 

  21. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392. doi:10.1016/j.urolonc.2007.01.019

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3:e2557. doi:10.1371/journal.pone.0002557

    Article  PubMed  Google Scholar 

  23. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704. doi:10.1373/clinchem.2007.101741

    Article  PubMed  CAS  Google Scholar 

  24. Wszolek MF, Rieger-Christ KM, Kenney PA, Gould JJ, Silva NB, Lavoie AK et al (2011) A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol Oncol 29:794–801. doi:10.1016/j.urolonc.2009.08.024

    Article  PubMed  CAS  Google Scholar 

  25. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176. doi:10.1002/ijc.24827

    PubMed  CAS  Google Scholar 

  26. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214. doi:10.1186/gb-2007-8-10-r214

    Article  PubMed  Google Scholar 

  27. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  PubMed  CAS  Google Scholar 

  28. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al (2005) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:24. doi:10.1186/1476-4598-5-24

    Article  Google Scholar 

  29. Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y (2011) MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137:557–566. doi:10.1007/s00432-010-0918-4

    Article  PubMed  CAS  Google Scholar 

  30. Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE et al (2011) Altered microRNA regulation in Huntington’s disease models. Exp Neurol 227:172–179. doi:10.1016/j.expneurol.2010.10.012

    Article  PubMed  CAS  Google Scholar 

  31. Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 5:25. doi:10.1186/1748-717X-5-25

    Article  PubMed  Google Scholar 

  32. Nikiforova MN, Gandhi M, Kelly L, Nikiforov YE (2011) MicroRNA dysregulation in human thyroid cells following exposure to ionizing radiation. Thyroid 21:261–266. doi:10.1089/thy.2010.0376

    Article  PubMed  CAS  Google Scholar 

  33. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116. doi:10.1158/0008-5472.CAN-07-2858

    Article  PubMed  CAS  Google Scholar 

  34. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  35. Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793. doi:10.1038/sj.onc.1210809

    Article  PubMed  CAS  Google Scholar 

  36. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135. doi:10.1158/0008-5472.CAN-07-0533

    Article  PubMed  CAS  Google Scholar 

  37. Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH (2010) Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res 3:28–47

    PubMed  Google Scholar 

  38. Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W et al (2010) Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16:1129–1139. doi:10.1158/1078-0432.CCR-09-2166

    Article  PubMed  CAS  Google Scholar 

  39. Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71:4443–4453. doi:10.1158/0008-5472.CAN-11-0608

    Article  PubMed  CAS  Google Scholar 

  40. Guo J, Dong Q, Fang Z, Chen X, Lu H, Wang K et al (2010) Identification of miRNAs that are associated with tumor metastasis in neuroblastoma. Cancer Biol Ther 9:446–452

    Article  PubMed  CAS  Google Scholar 

  41. Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L et al (2011) MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis 32:1641–1647. doi:10.1093/carcin/bgr199

    Article  PubMed  CAS  Google Scholar 

  42. Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB (2011) MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30:2644–2658. doi:10.1038/onc.2010.642

    Article  PubMed  CAS  Google Scholar 

  43. Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X et al (2009) MicroRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 15:2281–2290. doi:10.1158/1078-0432.CCR-08-1818

    Article  PubMed  CAS  Google Scholar 

  44. Ju X, Li D, Shi Q, Hou H, Sun N, Shen B (2009) Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr Hematol Oncol 26:1–10. doi:10.1080/08880010802378338

    Article  PubMed  Google Scholar 

  45. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ III, Scognamiglio T (2008) MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 21:1139–1146. doi:10.1038/modpathol.2008.105

    Article  PubMed  CAS  Google Scholar 

  46. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G et al (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13:497–508. doi:10.1677/erc.1.01209

    Article  PubMed  CAS  Google Scholar 

  47. Nikiforova MN, Chiosea SI, Nikiforov YE (2009) MicroRNA expression profiles in thyroid tumors. Endocr Pathol 20:85–91. doi:10.1007/s12022-009-9069-z

    Article  PubMed  CAS  Google Scholar 

  48. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF et al (2010) MiR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20:489–494. doi:10.1089/thy.2009.0027

    Article  PubMed  CAS  Google Scholar 

  49. Mazeh H, Mizrahi I, Halle D, Ilyayev N, Stojadinovic A, Trink B et al (2011) Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid 21:111–118. doi:10.1089/thy.2010.0356

    Article  PubMed  CAS  Google Scholar 

  50. Garbacki N, Di VE, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C et al (2011) MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 6:e16509. doi:10.1371/journal.pone.0016509

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou X et al (2011) MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 9:1100–1111. doi:10.1158/1541-7786.MCR-11-0007

    Article  PubMed  CAS  Google Scholar 

  52. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99:280–286. doi:10.1111/j.1349-7006.2007.00666.x

    Article  PubMed  CAS  Google Scholar 

  53. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X (2009) MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 286:217–222. doi:10.1016/j.canlet.2009.05.030

    Article  PubMed  CAS  Google Scholar 

  54. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE et al (2010) Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127:505–512. doi:10.1002/ijc.25320

    Article  PubMed  CAS  Google Scholar 

  55. Hisaoka M, Matsuyama A, Nagao Y, Luan L, Kuroda T, Akiyama H et al (2011) Identification of altered MicroRNA expression patterns in synovial sarcoma. Genes Chromosomes Cancer 50:137–145. doi:10.1002/gcc.20837

    Article  PubMed  CAS  Google Scholar 

  56. Jukic DM, Rao UN, Kelly L, Skaf JS, Drogowski LM, Kirkwood JM et al (2010) Microrna profiling analysis of differences between the melanoma of young adults and older adults. J Transl Med 8:27. doi:10.1186/1479-5876-8-27

    Article  PubMed  Google Scholar 

  57. Lages E, Guttin A, El AM, Ramus C, Ipas H, Dupre I, Rolland D et al (2011) MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One 6:e20600. doi:10.1371/journal.pone.0020600

    Article  PubMed  CAS  Google Scholar 

  58. Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M et al (2010) Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 5:656–663. doi:10.4161/epi.5.7.13055

    Article  PubMed  CAS  Google Scholar 

  59. Baluchamy S, Zhang Y, Ravichandran P, Ramesh V, Sodipe A, Hall JC et al (2010) Differential oxidative stress gene expression profile in mouse brain after proton exposure. In Vitro Cell Dev Biol Anim 46:718–725. doi:10.1007/s11626-010-9330-2

    Article  PubMed  CAS  Google Scholar 

  60. Shea MA, Smart DF (1994) Significant proton events of solar cycle 22 and a comparison with events of previous solar cycles. Adv Space Res 14:631–638

    Article  PubMed  CAS  Google Scholar 

  61. Smart DF, Shea MA (2002) A review of solar proton events during the 22nd solar cycle. Adv Space Res 30:1033–1044

    Article  PubMed  CAS  Google Scholar 

  62. Koturbash I, Zemp F, Kolb B, Kovalchuk O (2011) Sex-specific radiation-induced microRNAome responses in the hippocampus, cerebellum and frontal cortex in a mouse model. Mutat Res 722:114–118. doi:10.1016/j.mrgentox.2010.05.007

    Article  PubMed  CAS  Google Scholar 

  63. Tamminga J, Kathiria P, Koturbash I, Kovalchuk O (2008) DNA damage-induced upregulation of miR-709 in the germline downregulates BORIS to counteract aberrant DNA hypomethylation. Cell Cycle 7:3731–3736

    Article  PubMed  CAS  Google Scholar 

  64. Ozata DM, Caramuta S, Velazquez-Fernandez D, Akcakaya P, Xie H, Hoog A et al (2011) The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr Relat Cancer 18:643–655. doi:10.1530/ERC-11-0082

    Article  PubMed  Google Scholar 

  65. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y et al (2011) Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res 17:1722–1730. doi:10.1158/1078-0432.CCR-10-1800

    Article  PubMed  CAS  Google Scholar 

  66. Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H et al (2010) Identification of differentially expressed microRNAs in human male breast cancer. BMC Cancer 10:109. doi:10.1186/1471-2407-10-109

    Article  PubMed  Google Scholar 

  67. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D et al (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657. doi:10.1111/j.1440-1746.2008.05666.x

    Article  PubMed  CAS  Google Scholar 

  68. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL et al (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360. doi:10.1261/rna.1034808

    Article  PubMed  CAS  Google Scholar 

  69. Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B et al (2012) MiR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol 29:384–391. doi:10.1007/s12032-010-9797-4

    Article  PubMed  CAS  Google Scholar 

  70. Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K et al (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345. doi:10.1016/j.bbrc.2009.12.182

    Article  PubMed  CAS  Google Scholar 

  71. Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J (2010) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84:1–16. doi:10.1111/j.1600-0609.2009.01348.x

    Article  PubMed  CAS  Google Scholar 

  72. Magrelli A, Azzalin G, Salvatore M, Viganotti M, Tosto F, Colombo T et al (2009) Altered microRNA Expression Patterns in Hepatoblastoma Patients. Transl Oncol 2:157–163

    PubMed  Google Scholar 

  73. Lulla RR, Costa FF, Bischof JM, Chou PM, de F Vanin M et al (2011) Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma 732690. doi:10.1155/2011/732690

  74. Miko E, Czimmerer Z, Csanky E, Boros G, Buslig J, Dezso B et al (2009) Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 35:646–664. doi:10.3109/01902140902822312

    Article  PubMed  CAS  Google Scholar 

  75. Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K et al (2011) The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 25:1324–1334. doi:10.1038/leu.2011.81

    Article  PubMed  CAS  Google Scholar 

  76. Srivastava SK, Bhardwaj A, Singh S, Arora S, Wang B, Grizzle WE et al (2011) MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32:1832–1839. doi:10.1093/carcin/bgr223

    Article  PubMed  CAS  Google Scholar 

  77. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY et al (2008) Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542. doi:10.1158/1078-0432.CCR-07-1231

    Article  PubMed  CAS  Google Scholar 

  78. Leucci E, Onnis A, Cocco M, De FG, Imperatore F, Giuseppina A et al (2010) B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int J Cancer 126:1316–1326. doi:10.1002/ijc.24655

    PubMed  CAS  Google Scholar 

  79. Tryndyak VP, Ross SA, Beland FA, Pogribny IP (2009) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 48:479–487. doi:10.1002/mc.20484

    Article  PubMed  CAS  Google Scholar 

  80. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D et al (2011) Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 12:R77. doi:10.1186/gb-2011-12-8-r77

    Article  PubMed  CAS  Google Scholar 

  81. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688. doi:10.1038/nature06174

    Article  PubMed  CAS  Google Scholar 

  82. Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM et al (2009) Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28:3145–3156. doi:10.1038/emboj.2009.244

    Article  PubMed  CAS  Google Scholar 

  83. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137–1140. doi:10.1126/science.1138050

    Article  PubMed  CAS  Google Scholar 

  84. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  85. Gommans WM (2012) A-to-I editing of microRNAs: regulating the regulators? Semin Cell Dev Biol 23:251–257. doi:10.1016/j.semcdb.2011.09.018

    Article  PubMed  CAS  Google Scholar 

  86. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21. doi:10.1038/nsmb1041

    Article  PubMed  CAS  Google Scholar 

  87. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi:10.1093/nar/gkq1027

    Article  PubMed  CAS  Google Scholar 

  88. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  Google Scholar 

  89. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the National Aeronautics and Space Administration Cooperative Agreements NCC9-165 and NNX08BA47A, National Institutes of Health [P01-HG000205], the National Science Foundation [DBI 0830141].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Pourmand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.Y., Tariq, M.A., Perrott, J.P. et al. Distinctive microRNA expression signatures in proton-irradiated mice. Mol Cell Biochem 382, 225–235 (2013). https://doi.org/10.1007/s11010-013-1738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1738-z

Keywords

Navigation